The co-production of biochar and bioenergy using pyrolysis-combustion processes can potentially minimize the emission problems associated with conventional methods of agricultural by-product disposal. This approach also provides significant added-value potential through biochar application to soil. Despite these advantages, variations in biomass composition, including sulfur, nitrogen, ash, and volatile matter (VM) content, may significantly influence both the biochar quality and the emissions of harmful particulate matter (PM) and gaseous pollutants (SO, HS, NO, NO). Using a laboratory-scale continuous pyrolysis-combustion facility, the influence of biomass composition (rice husk and grape pruning) and volatile production (pyrolysis) temperature (400-800 °C) on the biochar properties and emissions during combustion of the raw pyrolysis volatiles were evaluated. Utilization of grape pruning resulted in higher energy-based yields of PM than the rice husk, the majority of which consisted of the PM fraction due to the elevated pyrogas content of the volatiles. The PM emissions were found to be independent of the feedstock ash content due to its retainment in the biochar. Greater volatilization of biomass sulfur and nitrogen during pyrolysis at higher temperatures resulted in higher yields of sulfurous and nitrogenous gaseous pollutants. The energy-based yields of NO and NO were found to increase by 16% and 50% for rice husk and 21% and 189% for grape pruning respectively between 400 and 800 °C. The same trend was also observed for the emissions of HS and SO for both feedstocks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2018.05.004DOI Listing

Publication Analysis

Top Keywords

rice husk
12
grape pruning
12
co-production biochar
8
biochar bioenergy
8
biomass composition
8
sulfur nitrogen
8
gaseous pollutants
8
energy-based yields
8
biochar
6
emission characteristics
4

Similar Publications

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!