Polyurethane elastomer (PUE) composites were synthesized with a low additive content of waste natural cellulosic fibers from office paper. A new technology combining prepolymer method with physical blending and modification was adopted. The results showed that cellulosic fibers were covalently bonded to polyurethane molecular chains and served as a cross-linking agent making the degree of phase separation decrease. Even so, the lowest additive content of cellulosic fibers (1 wt%) in this work could make polyurethane still hold a certain degree of phase separation. Besides, thermal stability of polyurethane was improved from 288 to around 300 °C even at the low cellulosic fibers content. PUE with 3% cellulosic fibers had the better interfacial compatibility between cellulosic fibers and polyurethane causing the greater thermal reinforcement. PUE with 4% and 5% cellulosic fibers had the worse interfacial compatibility generating the better damping capacity indicating that cellulosic fibers could improve damping performance of polyurethane, especially polyurethane with 5 wt% fibers. It meant that cellulosic fibers had a potential application in damping materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.06.036 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Technical University of Munich (TUM), TUM School of Life Sciences Weihenstephan, Alte Akademie 8, 85354 Freising, Germany; Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany. Electronic address:
Macauba fruit pulp (Acrocomia aculeata) is an emerging oil source. After de-oiling, the macauba pulp meal (MPM) offers a dietary fiber content of 40-50 %, which mainly comprises cell wall polysaccharides (CWP). The present work aimed to assess the potential of MPM as an innovative source of sustainable food polysaccharides.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!