Precipitation strengthening in Cu-Ni-Si alloys modeled with ab initio based interatomic potentials.

J Chem Phys

Institut für Funktionelle Materie und Quantentechnologien (FMQ), Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Published: July 2018

Effective interaction potentials suitable for Cu/δ-NiSi and Cu/β-NiSi are developed. We optimise the potential parameters of an embedded atom method potential to reproduce forces, energies, and stresses obtained from ab initio calculations. Details of the potential generation are given, and its validation is demonstrated. The potentials are used in molecular dynamics simulations of shear tests to study the interactions of edge dislocations with coherent δ-NiSi and β-NiSi precipitates embedded in a copper matrix. In spite of significantly different crystallographic structures of copper and δ-NiSi which usually result in circumvention of dislocations, we also observed cutting processes in our simulations. Dislocations cut for a specific orientation of the δ-NiSi precipitate and in some cases where dislocation loops originating from previous circumvention processes are present in the glide plane. It is found that β-NiSi precipitates have a similar effect on precipitation strengthening as δ-NiSi. Dislocations usually cut β-NiSi but increased coherency strain can lead to circumvention processes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5029887DOI Listing

Publication Analysis

Top Keywords

precipitation strengthening
8
β-nisi precipitates
8
dislocations cut
8
circumvention processes
8
strengthening cu-ni-si
4
cu-ni-si alloys
4
alloys modeled
4
modeled initio
4
initio based
4
based interatomic
4

Similar Publications

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Titanium Oxide Formation in TiCoCrFeMn High-Entropy Alloys.

Materials (Basel)

January 2025

Faculty of Advanced Technologies and Chemistry, Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.

High-entropy materials, characterized by complex chemical compositions, are difficult to identify and describe structurally. These problems are encountered at the composition design stage when choosing an effective method for predicting the final phase structure of the alloy, which affects its functional properties. In this work, the effects of introducing oxide precipitates into the matrix of a high-entropy TiCoCrFeMn alloy to strengthen ceramic particles were studied.

View Article and Find Full Text PDF

Research Progress on Titanium-Niobium Micro-Alloyed High-Strength Steel.

Materials (Basel)

January 2025

School of Civil and Architectural Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

Research on micro-alloyed steel is a strategic measure to meet the needs of various industries and promote green development, and it is essential for many major steel-producing countries. Currently, the mainstream micro-alloying elements in the research and application of micro-alloyed steel are V, Ti, and Nb. Due to the high price of V, the actual production is mostly achieved by adding titanium-niobium composite to change the properties of high-strength steel.

View Article and Find Full Text PDF

The study analyzed the spatial distribution characteristics, evolution rules, and driving factors of 138 China's national agricultural cultural heritage sites from 2013 to 2021 at the overall and regional levels, using kernel density analysis, Centres for standard deviation ellipse analyses, spatial autocorrelation analysis, and geographical detector analysis.The results showed that: ①From an overall perspective, the spatial pattern of China's national agricultural cultural heritage changed greatly from 2013 to 2021, with a highly uneven spatial distribution, gradually showing a distribution pattern of "widely distributed, locally concentrated". The spatial distribution of China's national agricultural cultural heritage is increasingly evident, and the spatial distribution type has evolved from discrete to clustered.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!