Atrazine is a herbicide that is banned in Europe but remains widely used on different types of crops in several countries in the American continent. Atrazine is known to be an endocrine disruptor and its effects on gonads have been extensively reported, but the toxic action on other organs is poorly documented. In this paper, we investigated the toxicity of atrazine on the gills and spleens of Nile tilapia (Oreochromis niloticus). The median lethal concentration (LC), capable of killing one-half of the test animals was calculated, and sublethal concentrations of atrazine were used in a semistatic and subchronic assay. The following four experimental groups were formed: control not exposed to atrazine, a group exposed to 1 ppm atrazine for 15 days, a group exposed to 2 ppm for 7 days, and a group exposed to 2 ppm for 15 days. The concentrations were verified during the study by high performance liquid chromatography. The gills and spleens were stained with hematoxylin and eosin and histopathological findings were made. The Perls technique was used on the spleens to identify hemosiderin, lipofuscin, and melanin pigments in the cells from melanomacrophage centres (MMCs). The spleens were submitted to proliferating cell nuclear antigen (PCNA) and inducible nitric oxide synthase (iNOS) immunohistochemistry, and morphometry was used to assess splenocyte proliferation and melanomacrophage iNOS expression. Finally, a colorimetric assay for caspase-3 was performed on the spleens to identify apoptosis. Vascular and structural alterations, such as venous sinus congestion, aneurysm, hemorrhage, pillar cell hypertrophy, disarrangement of secondary lamellae, and epithelial lifting were observed in the gills. The frequency of individuals with aneurysms was higher in the groups treated with 2 ppm than in other groups. Atrazine had an immunomodulatory effect on the spleen, observed by the alteration in the percentage of red and white pulp, alteration of the MMC area, changes in the melanomacrophage pigment content, slight iNOS suppression, decrease in splenocyte proliferation under 1 ppm atrazine, and increased caspase 3 activity under 2 ppm atrazine after 7 and 15 d. Such effects could compromise oxygenation and the immune response and, ultimately, the survival and fitness of the fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2018.06.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!