Deregulated RAS signaling is associated with increasing numbers of congenital diseases usually referred to as RASopathies. The spectrum of genes and mutant alleles causing these diseases has been significantly expanded in recent years. This progress has triggered new challenges, including the origin and subsequent selection of the mutations driving these diseases, the specific pathobiological programs triggered by those mutations, the type of correlations that exist between the genotype and the clinical features of patients, and the ancillary genetic factors that influence the severity of the disease in patients. These issues also directly impinge on the feasibility of using RAS pathway drugs to treat RASopathy patients. Here, we will review the main developments and pending challenges in this research topic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615762 | PMC |
http://dx.doi.org/10.1016/j.ceb.2018.06.007 | DOI Listing |
Trends Biochem Sci
June 2020
University of North Carolina at Chapel Hill, Department of Pharmacology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA. Electronic address:
The RAS oncoprotein drives elevated macropinocytosis, a metabolic process essential for cancer growth. A recent study by Ramirez et al. elucidated a mechanism whereby RAS controls V-ATPase association with the plasma membrane to drive RAC1 GTPase-dependent macropinocytosis.
View Article and Find Full Text PDFJ Nutr
May 2020
College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
Mechanistic target of rapamycin complex 1 (mTORC1) is a highly evolutionarily conserved serine/threonine kinase that regulates cell growth and metabolism in response to multiple environmental cues, such as nutrients, hormones, energy, and stress. Deregulation of mTORC1 can lead to diseases such as diabetes, obesity, and cancer. A series of small GTPases, including Rag, Ras homolog enriched in brain (Rheb), adenosine diphosphate ribosylation factor 1 (Arf1), Ras-related protein Ral-A, Ras homolog (Rho), and Rab, are involved in regulating mTORC1 in response to nutrients, and mTORC1 is differentially regulated via these small GTPases according to specific conditions.
View Article and Find Full Text PDFMutual gliding motility A (MglA), a small Ras-like GTPase; Mutual gliding motility B (MglB), its GTPase activating protein (GAP); and Required for Motility Response Regulator (RomR), a protein that contains a response regulator receiver domain, are major components of a GTPase-dependent biochemical oscillator that drives cell polarity reversals in the bacterium Myxococcus xanthus. We report the crystal structure of a complex of M. xanthus MglA and MglB, which reveals that the C-terminal helix (Ct-helix) from one protomer of the dimeric MglB binds to a pocket distal to the active site of MglA.
View Article and Find Full Text PDFAutophagy
March 2020
Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Glucosamine (GlcN), a dietary supplement widely utilized to promote joint health and effective in the treatment of osteoarthritis, is an effective macroautophagy/autophagy activator and . Previous studies have shown that autophagy is required for hepatitis B virus (HBV) replication and envelopment. The objective of this study was to determine whether and how GlcN affects HBV replication, using and experiments.
View Article and Find Full Text PDFCurr Opin Cell Biol
December 2018
Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.
Deregulated RAS signaling is associated with increasing numbers of congenital diseases usually referred to as RASopathies. The spectrum of genes and mutant alleles causing these diseases has been significantly expanded in recent years. This progress has triggered new challenges, including the origin and subsequent selection of the mutations driving these diseases, the specific pathobiological programs triggered by those mutations, the type of correlations that exist between the genotype and the clinical features of patients, and the ancillary genetic factors that influence the severity of the disease in patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!