Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dekkera bruxellensis is continuously changing its status in fermentation processes, ranging from a contaminant or spoiling yeast to a microorganism with potential to produce metabolites of biotechnological interest. In spite of that, several major aspects of its physiology are still poorly understood. As an acetogenic yeast, minimal oxygen concentrations are able to drive glucose assimilation to oxidative metabolism, in order to produce biomass and acetate, with consequent low yield in ethanol. In the present study, we used disulfiram to inhibit acetaldehyde dehydrogenase activity to evaluate the influence of cytosolic acetate on cell metabolism. D. bruxellensis was more tolerant to disulfiram than Saccharomyces cerevisiae and the use of different carbon sources revealed that the former yeast might be able to export acetate (or acetyl-CoA) from mitochondria to cytoplasm. Fermentation assays showed that acetaldehyde dehydrogenase inhibition re-oriented yeast central metabolism to increase ethanol production and decrease biomass formation. However, glucose uptake was reduced, which ultimately represents economical loss to the fermentation process. This might be the major challenge for future metabolic engineering enterprises on this yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.3348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!