Simple Physical Model Unravels Influences of Chemokine on Shape Deformation and Migration of Human Hematopoietic Stem Cells.

Sci Rep

Center for Integrative Medicine and Physics, Institute for Advanced Studies, Kyoto University, 606-8501, Kyoto, Japan.

Published: July 2018

AI Article Synopsis

  • The study investigates how human hematopoietic stem cells (HSC), taken from umbilical cord blood, behave on bone marrow surfaces with and without the presence of the chemokine SDF1α.
  • Researchers varied the concentration of SDF1α and the density of ligand molecules to analyze cell deformation and migration, developing a theoretical model focused on the nonlinear relationship between shape change and movement.
  • The findings suggest that while a linear model works for HSC behavior without SDF1α, a nonlinear approach is crucial for accurately modeling their elongated migration in response to this chemokine, allowing for deeper insights into how external factors influence cell dynamics.

Article Abstract

We studied the dynamic behavior of human hematopoietic stem cells (HSC) on the in vitro model of bone marrow surfaces in the absence and presence of chemokine (SDF1α). The deformation and migration of cells were investigated by varying the chemokine concentration and surface density of ligand molecules. Since HSC used in this study were primary cells extracted from the human umbilical cord blood, it is not possible to introduce molecular reporter systems before or during the live cell imaging. To account for the experimental observations, we propose a simple and general theoretical model for cell crawling. In contrast to other theoretical models reported previously, our model focuses on the nonlinear coupling between shape deformation and translational motion and is free from any molecular-level process. Therefore, it is ideally suited for the comparison with our experimental results. We have demonstrated that the results in the absence of SDF1α were well recapitulated by the linear model, while the nonlinear model is necessary to reproduce the elongated migration observed in the presence of SDF1α. The combination of the simple theoretical model and the label-free, live cell observations of human primary cells opens a large potential to numerically identify the differential effects of extrinsic factors such as chemokines, growth factors, and clinical drugs on dynamic phenotypes of primary cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045678PMC
http://dx.doi.org/10.1038/s41598-018-28750-xDOI Listing

Publication Analysis

Top Keywords

primary cells
12
shape deformation
8
deformation migration
8
human hematopoietic
8
hematopoietic stem
8
stem cells
8
live cell
8
theoretical model
8
model
7
cells
6

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

[High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Wulumuqi 830011, China. *Corresponding author, E-mail:

Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls.

View Article and Find Full Text PDF

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

The connection between metabolic reprogramming and tumor progression has been demonstrated in an increasing number of researches. However, further research is required to identify how metabolic reprogramming affects interpatient heterogeneity and prognosis in clear cell renal cell carcinoma (ccRCC). In this work, single-cell RNA sequencing (scRNA-seq) based deconvolution was utilized to create a malignant cell hierarchy with metabolic differences and to investigate the relationship between metabolic biomarkers and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!