A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strong plates enhance mantle mixing in early Earth. | LitMetric

Strong plates enhance mantle mixing in early Earth.

Nat Commun

Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, London, UK.

Published: July 2018

In the present-day Earth, some subducting plates (slabs) are flattening above the upper-lower mantle boundary at ~670 km depth, whereas others go through, indicating a mode between layered and whole-mantle convection. Previous models predicted that in a few hundred degree hotter early Earth, convection was likely more layered due to dominant slab stagnation. In self-consistent numerical models where slabs have a plate-like rheology, strong slabs and mobile plate boundaries favour stagnation for old and penetration for young slabs, as observed today. Here we show that such models predict slabs would have penetrated into the lower mantle more easily in a hotter Earth, when a weaker asthenosphere and decreased plate density and strength resulted in subduction almost without trench retreat. Thus, heat and material transport in the Earth's mantle was more (rather than less) efficient in the past, which better matches the thermal evolution of the Earth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045636PMC
http://dx.doi.org/10.1038/s41467-018-05194-5DOI Listing

Publication Analysis

Top Keywords

early earth
8
earth
5
slabs
5
strong plates
4
plates enhance
4
mantle
4
enhance mantle
4
mantle mixing
4
mixing early
4
earth present-day
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!