Loading and kinematic profiles for patellofemoral durability testing.

J Mech Behav Biomed Mater

Center for Orthopaedic Biomechanics, The University of Denver, 2390 S. York St., Denver, CO 80208, USA.

Published: October 2018

Patellar complications after total knee replacement (TKR), such as maltracking, fracture, wear, and loosening, can lead to implant failure and revision surgery. However, few in vitro patellofemoral durability tests for the implanted joint have been developed. Existing standards for patellofemoral loading profiles (ISO 14243-5, draft) are generic (not implant-specific) and do not include patient variability. The goal of this study was to derive implant-specific loading profiles to simulate a motor task that reaches high knee flexion and include patient variability. In vivo data, including motion capture and stereo-radiographic images at the knee, were collected for eleven rotating platform TKR patients performing a single-leg lunge activity. Quadriceps forces during the activity were estimated for each patient from marker data and ground forces with a musculoskeletal model. Patellofemoral contact forces were estimated with patient-specific finite element models of the implanted knees. Stereo-radiography patellofemoral kinematics and estimated contact loads were combined to derive seven loading profiles that span the observed inter-patient variability. The loading profiles were experimentally evaluated in a 6-degree-of-freedom testing machine and worst-case loading profiles were identified. The two profiles that generated the highest stresses in the patellar button (43% and 46% of the volume surpassed yield stress, respectively) included the largest internal (4.4°) and external (13.0°) patellar rotation, and greater medio/lateral contact forces (up to 915 N). The same profiles were also tested in a finite element model of the experimental simulator, which was able to adequately replicate location and magnitude of the peak deformations measured in the prostheses after the experiment. The kinematic and loading profiles developed in this study simulated a high-demand motor task and incorporated inter-patient variability, capturing worst-case patellofemoral configurations, and can be utilized for pre-clinical testing of new patellar designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603839PMC
http://dx.doi.org/10.1016/j.jmbbm.2018.06.035DOI Listing

Publication Analysis

Top Keywords

loading profiles
24
profiles
9
patellofemoral durability
8
testing patellar
8
include patient
8
patient variability
8
motor task
8
contact forces
8
finite element
8
inter-patient variability
8

Similar Publications

Quality-by-design principles applied to the development and optimisation of lidocaine-loaded dissolving microneedle arrays - a proof-of-concept.

Drug Deliv Transl Res

January 2025

Leicester Institute of Pharmaceutical, Health and Social Care Innovations, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.

The use of dissolving microneedle arrays (dMNA) for intradermal and transdermal drug delivery has been a growing trend in the field for the past decades. However, a lack of specific regulatory standards still hinders their clinical development and translation to market. It is also well-known that dMNA composition significantly impacts their performance, with each new formulation potentially presenting a challenge for developers, manufacturers and regulatory agencies.

View Article and Find Full Text PDF

The adoptive transfer of TCR-T cells specific to neoantigens preferentially exhibits potent cytotoxicity to tumor cells and has shown promising efficacy in various preclinical human cancers. In this study, we first identified a functional TCR, Tcr-1, which selectively recognized the SYT-SSX fusion neoantigen shared by most synovial sarcomas. Engineered T-cell expressing Tcr-1 (Tcr-T1) demonstrated HLA-A*2402-restricted, antigen-specific anti-tumoral efficacy against synovial sarcoma cells, both in vitro and in vivo.

View Article and Find Full Text PDF

Medical and surgical treatments for cystic echinococcosis (CE) are challenged by various complications. This study evaluates in vitro protoscolicidal activity of piperine-loaded mesoporous silica nanoparticles (PIP-MSNs) against protoscoleces of Echinococcus granulosus. MSNs were prepared by adding tetraethyl orthosilicate to cetyltrimethylammonium bromide and NaOH, and then loaded with PIP.

View Article and Find Full Text PDF

Rapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonoylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!