Background: Nitrogen (N) is a key macronutrient essential for plant growth, and its availability has a strong influence on crop development. The application of synthetic N fertilizers on crops has increased substantially in recent decades; however, the applied N is not fully utilized due to the low N use efficiency of crops. To overcome this limitation, it is important to understand the genome-wide responses and functions of key genes and potential regulatory factors in N metabolism.
Results: Here, we characterized changes in the rice (Oryza sativa) transcriptome, including genes, newly identified putative long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) and their target mRNAs in response to N starvation using four different transcriptome approaches. Analysis of rice genes involved in N metabolism and/or transport using strand-specific RNA-Seq identified 2588 novel putative lncRNA encoding loci. Analysis of previously published RNA-Seq datasets revealed a group of N starvation-responsive lncRNAs showing differential expression under other abiotic stress conditions. Poly A-primed sequencing (2P-Seq) revealed alternatively polyadenylated isoforms of N starvation-responsive lncRNAs and provided precise 3' end information on the transcript models of these lncRNAs. Analysis of small RNA-Seq data identified N starvation-responsive miRNAs and down-regulation of miR169 family members, causing de-repression of NF-YA, as confirmed by strand-specific RNA-Seq and qRT-PCR. Moreover, we profiled the N starvation-responsive down-regulation of root-specific miRNA, osa-miR444a.4-3p, and Degradome sequencing confirmed MADS25 as a novel target gene.
Conclusions: In this study, we used a combination of multiple RNA-Seq analyses to extensively profile the expression of genes, newly identified lncRNAs, and microRNAs in N-starved rice roots and shoots. Data generated in this study provide an in-depth understanding of the regulatory pathways modulated by N starvation-responsive miRNAs. The results of comprehensive, large-scale data analysis provide valuable information on multiple aspects of the rice transcriptome, which may be useful in understanding the responses of rice plants to changes in the N supply status of soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043990 | PMC |
http://dx.doi.org/10.1186/s12864-018-4897-1 | DOI Listing |
Plant Cell Rep
December 2024
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan.
Pigmentation in rice is due mainly to the accumulation of anthocyanins. Five color mutant lines, AZ1701, AZ1702, AZ1711, AZ1714, and AZ1715, derived from the sodium azide mutagenesis on the non-pigmented IR64 variety, were applied to study inheritance modes and genes for pigmentation. The mutant line AZ1711, when crossed with IR64, displays pigmentation in various tissues, exhibiting a 3:1 pigmented to non-pigmented ratio in the F progeny, indicating a single dominant locus controlling pigmentation.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!