Process instability has been a challenge to anaerobic digestion of foodwaste at higher organic loading rates. Co-digestion is one of the measures to improve stability. This study conducted batch experiments to compare liquid dairy manure and dairy manure digestate as a co-substrate for anaerobic digestion of foodwaste. The batch co-digestion experiments showed a two-stage biogas production process, which could be simulated with a modification of the Gompertz model. The specific biogas yields derived with the two-stage biogas production model was further simulated against the co-substrate ratios with substrate limitation - inhibition models for identifying the optimal co-substrate ratio. The Haldane model was the best to simulate co-substrate limitation - inhibition kinetics in anaerobic co-digestion of foodwaste. A higher ratio of dairy manure could result in co-substrate inhibition to biogas production due to recalcitrance of cellulose and toxicity of lignin and lignin derivatives. Kinetic modeling shows that the optimal volatile solids (VS) ratio of liquid dairy manure is 16.6%, at which the maximum specific methane yield is 0.54 L/g VS. Semi-continuous co-digestion of 88% foodwaste and 12% liquid dairy manure at a hydraulic retention time of 14 d attained 94% of the simulated maximum methane yield. Although co-digestion of foodwaste and manure digestate resulted in lower biogas yields than co-digestion with liquid dairy manure, manure digestate is still an attractive co-substrate that has several operational advantages compared with liquid dairy manure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.07.016 | DOI Listing |
J Anim Sci
January 2025
University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom.
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy.
Mastitis represents a significant challenge for dairy farming, resulting in economic losses and environmental impacts. This study assesses a model for the evaluation of the impact of mastitis on dairy productivity and Global Warming Potential (GWP) under diverse management scenarios. The model considers a range of factors, including bedding materials, milking systems, health surveillance, and overcrowding.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
ICREA (Institució de Recerca i Estudis Avançats), 08010 Barcelona, Spain; Department of Animal and Veterinary Sciences, Universitat de Lleida, 25198 Lleida, Spain.
Sustainable alternatives to high environmental input feed ingredients are important to reducing the environmental impact of animal agriculture. Protein and oil extracted from cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) on waste feedstocks such as manure, food waste and plant residues could be a suitable source of nutrients. The oil from BFSL contains large amounts of saturated fatty acids, particularly lauric acid, and may be a more sustainable alternative to palm and coconut oils that are currently used in calf milk replacers in many parts of the world.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Evaluating how weather, farm management, and soil conditions impact phosphorus (P) loss from agricultural sites is essential for improving our waterways in agricultural watersheds. In this study, rainfall characteristics, manure application timing, tillage, surface condition, and soil test phosphorus (STP) were analyzed to determine their effects on total phosphorus (TP) and dissolved phosphorus (DP) loss using 125 site-years of runoff data collected by the University of Wisconsin Discovery Farms and Discovery Farms Minnesota. Three linear mixed models (LMMs) were then used to evaluate the influence of those factors on TP and DP losses: (1) a model that included all runoff events, (2) manured sites only, and (3) precipitation events only.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Process Engineering, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18051 Rostock, Germany.
An increasing number of automation technologies for dairy cattle farming, including automatic milking, feeding, manure removal and bedding, are now commercially available. The effects of these technologies on individual aspects of animal welfare have already been explored to some extent. However, as of now, there are no studies that analyze the impact of increasing farm automation through various combinations of these technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!