Investigation into the genetic diversity in toll-like receptors 2 and 4 in the European badger Meles meles.

Res Vet Sci

Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, M5 4WT, UK; Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, M5 4WT, UK. Electronic address:

Published: August 2018

The Toll-like receptor (TLR) genes are a conserved family of genes central to the innate immune response to pathogen infection. They encode receptor proteins, recognise pathogen associated molecular patterns (PAMPs) and trigger initial immune responses. In some host-pathogen systems, it is reported that genetic differences, such as single nucleotide polymorphisms (SNPs), associate with disease resistance or susceptibility. Little is known about TLR gene diversity in the European badger (Meles meles). We collected DNA from UK badgers, carried out PCR amplification of the badger TLR2 gene and exon 3 of TLR4 and determined DNA sequences for individual badgers for TLR2 (n = 61) and TLR4 exon 3 (n = 59). No polymorphism was observed in TLR4. Three TLR2 amino acid haplotype variants were found. Ninety five percent of badgers were homozygous for one common haplotype (H1), the remaining three badgers had genotypes H1/H3, H1/H2 and H2/H2. By broad comparison with other species, diversity in TLR genes in badgers seems low. This could be due to a relatively localised sampling or inherent low genetic diversity. Further studies are required to assess the generality of the low observed diversity and the relevance to the immunological status of badgers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2018.06.020DOI Listing

Publication Analysis

Top Keywords

genetic diversity
8
european badger
8
badger meles
8
meles meles
8
tlr genes
8
badgers
6
diversity
5
investigation genetic
4
diversity toll-like
4
toll-like receptors
4

Similar Publications

Genomic Patterns are Associated with Different Sequelae of Patients with Long-Term COVID-19.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Pathobiology Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.

In the post-large era, various COVID-19 sequelae are getting more and more attention to health problems. Although the mortality rate of the COVID-19 infection is now declining, it is often accompanied by new clinical sequelae with different symptoms such as fatigue after infection, loss of smell. The degree of age, gender, virus infection seems to be weakly correlated with clinical symptoms.

View Article and Find Full Text PDF

Background: Anorexia nervosa (AN) is a polygenic, severe metabopsychiatric disorder with poorly understood aetiology. Eight significant loci have been identified by genome-wide association studies (GWAS) and single nucleotide polymorphism (SNP)-based heritability was estimated to be ~ 11-17, yet causal variants remain elusive. It is therefore important to define the full spectrum of genetic variants in the wider regions surrounding these significantly associated loci.

View Article and Find Full Text PDF

The genomic pattern of insertion/deletion variations during rice improvement.

BMC Genomics

December 2024

Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.

Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.

Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties.

View Article and Find Full Text PDF

Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.

Plant Cell Rep

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth.

View Article and Find Full Text PDF

Near telomere-to-telomere assembly of the Tarim pigeon (Columba livia) genome.

Sci Data

December 2024

Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Pigeons serve as important model animals and commercial poultry. The Tarim pigeon, as a breed of Columba livia, is a locally indigenous breed unique to China. While the genome of C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!