Hydrogen peroxide (HO) decomposition mechanism and its oxidative desulfurization activity on hexagonal boron nitride monolayer (h-BN) have been explored by density functional theory (DFT) at M06-2X/6-311 + G (d,p) level. A cluster model which contains seven rings has been constructed to simulate the h-BN surface. It is found that 7 possible species will be generated after the decomposition of HO. Among them, 2H*+O* and 2H*+2O* are relatively unstable while other species, such as HOO*+H*, HO*+HO*, H*+HO + O*, HO*+O* are relatively stable and may exist in the current system. In addition, 4 decomposition pathways have been explored. Results show that the HO* will first undergo an O-H bond break (HOO*+H*), then the HO-O bond decomposes into H*+HO*+O* (Pathway (b)). By considering the concentration and activation energy together, the HO*+O* is proposed to be the most possible active species for oxidative desulfurization due to the relative higher concentration and lower activation energy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2018.07.002DOI Listing

Publication Analysis

Top Keywords

oxidative desulfurization
12
decomposition mechanism
8
mechanism oxidative
8
desulfurization activity
8
activity hexagonal
8
hexagonal boron
8
boron nitride
8
nitride monolayer
8
density functional
8
functional theory
8

Similar Publications

Constructing a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic Oxidation of Thioethers to Sulfoxides Utilizing In Situ-Generated Superoxide Radicals.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), , was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BWO, and the photosensitizer TPT.

View Article and Find Full Text PDF

Evaluating the Appropriateness of Selected Foundry Sands for the Casting of Reactor Housings: A Study Based on Physicochemical Characterization Outcomes.

Materials (Basel)

December 2024

Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.

In the case of desulfurization and spheroization of cast iron using the in-mold method, in which the treated cast iron is poured into the reaction chamber and placed in the casting mold, the mineral raw material of the mold should support these processes. Therefore, it is important to know the physicochemical properties of the materials selected for the production of casting molds and to learn about the phenomena occurring during their pouring. The research presented in this paper was carried out on quartz, magnesite, chromite, and olivine sands.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

Activation of Caged Functional RNAs by An Oxidative Transformation.

Chembiochem

December 2024

Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.

RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.

View Article and Find Full Text PDF

Pilot-scale biogas desulfurization through anoxic biofiltration.

J Hazard Mater

December 2024

Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!