We use a combination of x-ray diffraction, total scattering, and quantum mechanical calculations to determine the mechanism responsible for hydration-driven contraction in ZrW_{2}O_{8}. The inclusion of H_{2}O molecules within the ZrW_{2}O_{8} network drives the concerted formation of new W─O bonds to give one-dimensional (─W─O─)_{n} strings. The topology of the ZrW_{2}O_{8} network is such that there is no unique choice for the string trajectories: the same local changes in coordination can propagate with a large number of different periodicities. Consequently, ZrW_{2}O_{8}·H_{2}O is heavily disordered, with each configuration of strings forming a dense aperiodic "spaghetti." This new connectivity contracts the unit cell via large shifts in the Zr and W atom positions. Fluctuations of the undistorted parent structure towards this spaghetti phase emerge as the key negative thermal expansion (NTE) phonon modes in ZrW_{2}O_{8} itself. The large relative density of NTE phonon modes in ZrW_{2}O_{8} actually reflects the degeneracy of volume-contracting spaghetti excitations, itself a function of the particular topology of this remarkable material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.265501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!