Stability Analysis of an Array of Magnets: When Will It Jump?

Phys Rev Lett

Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

Published: June 2018

AI Article Synopsis

  • A study explores how a two-dimensional array of magnets, aligned vertically on a flat surface, can be compacted until it becomes unstable, causing the magnets to pop out.
  • The research combines experimental and theoretical approaches to determine the maximum packing density of these cylindrical magnets.
  • Findings indicate that this instability results from height fluctuations among the magnets, and the predicted maximum density aligns closely with the experimental observations across different magnet types.

Article Abstract

A bidimensional array of magnets whose magnetic moments share the same vertical orientation, and lying on a planar surface, can be gradually compacted. As the density reaches a threshold, the assembly becomes unstable, and the magnets violently pop out of plane. In this Letter, we investigate experimentally and theoretically the maximum packing fraction (or density) of a bidimensional planar assembly of identical cylindrical magnets. We show that the instability can be attributed to local fluctuations of the altitude of the magnets on the planar surface. The maximum density is theoretically predicted assuming dipolar interactions between the magnets and is in excellent agreement with experimental results using a variety of cylindrical magnets.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.264301DOI Listing

Publication Analysis

Top Keywords

array magnets
8
planar surface
8
cylindrical magnets
8
magnets
7
stability analysis
4
analysis array
4
magnets will
4
will jump?
4
jump? bidimensional
4
bidimensional array
4

Similar Publications

Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance.

ACS Nano

January 2025

CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.

View Article and Find Full Text PDF

A rare case of double pituitary prolactinomas: the diagnostic application of intraoperative ultrasonography and DNA methylation markers.

Arch Endocrinol Metab

January 2025

Henry Ford Health Hermelin Brain Tumor Center Department of Neurosurgery DetroitMI USA Henry Ford Health, Omics Laboratory, Hermelin Brain Tumor Center, Department of Neurosurgery, Detroit, MI, USA.

The aim of this study is to describe the management and evolution of a patient with the rare condition of double lactotroph tumors and assess the role of intraoperative ultrasonography (IOUS) for their detection and methylation-based liquid biopsy for their diagnosis and monitoring. A 29-year-old woman diagnosed with double lactotroph tumors through hormonal and MRI workup underwent surgical resection due to cabergoline intolerance. To detect a tumor missing through visual inspection, IOUS was performed.

View Article and Find Full Text PDF

Productive biosensing techniques empowered by all-dielectric metasurfaces.

Front Bioeng Biotechnol

January 2025

Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan.

Artificially designed, functional nanostructured surfaces, called metasurfaces, are an emerging platform for biosensing. Two major types of metasurface biosensors have been reported: one is based on resonant-wavelength shift and the other is specialized for fluorescence (FL) detection. The all-dielectric metasurfaces that composed of periodic arrays of silicon nanocolumns have a series of optical magnetic-mode resonances, some of which were found to significantly enhance capability for FL detection of diverse target biomolecules, ranging from nucleic acid to antigens and antibodies.

View Article and Find Full Text PDF

High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance.

View Article and Find Full Text PDF

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!