Volcano Transition in a Solvable Model of Frustrated Oscillators.

Phys Rev Lett

Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA.

Published: June 2018

In 1992, a puzzling transition was discovered in simulations of randomly coupled limit-cycle oscillators. This so-called volcano transition has resisted analysis ever since. It was originally conjectured to mark the emergence of an oscillator glass, but here we show it need not. We introduce and solve a simpler model with a qualitatively identical volcano transition and find that its supercritical state is not glassy. We discuss the implications for the original model and suggest experimental systems in which a volcano transition and oscillator glass may appear.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.264102DOI Listing

Publication Analysis

Top Keywords

volcano transition
16
oscillator glass
8
volcano
4
transition solvable
4
solvable model
4
model frustrated
4
frustrated oscillators
4
oscillators 1992
4
1992 puzzling
4
transition
4

Similar Publications

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising alternative for oxygen evolution reactions. The search for efficient catalysts has been attracting increasing scientific attention. This work explores the performance of nitrogen-doped graphene-supported single-atom catalysts (M-NC SACs) for the reaction.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.

View Article and Find Full Text PDF

Outcome data on using cangrelor in older patients are limited. This post hoc analysis of the itAlian pRospective Study on CANGrELOr (ARCANGELO) study aims to assess bleeding and ischemic outcomes with the transition from cangrelor to any oral P2Y inhibitors in age-stratified subgroups (≥75 years-older, <75 years-younger) of patients with acute coronary syndrome who underwent percutaneous coronary intervention (PCI). Of 995 patients, 215 (21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!