Posttraumatic stress disorder (PTSD) has been associated with a disturbance in neural intrinsic connectivity networks (ICN), including the central executive network (CEN), default mode network (DMN), and salience network (SN). Here, we conducted a preliminary investigation examining potential changes in ICN recruitment as a function of real-time fMRI neurofeedback (rt-fMRI-NFB) during symptom provocation where we targeted the downregulation of neural response within the amygdala-a key region-of-interest in PTSD neuropathophysiology. Patients with PTSD (n = 14) completed three sessions of rt-fMRI-NFB with the following conditions: (a) regulate: decrease activation in the amygdala while processing personalized trauma words; (b) view: process trauma words while not attempting to regulate the amygdala; and (c) neutral: process neutral words. We found that recruitment of the left CEN increased over neurofeedback runs during the regulate condition, a finding supported by increased dlPFC activation during the regulate as compared to the view condition. In contrast, DMN task-negative recruitment was stable during neurofeedback runs, albeit was the highest during view conditions and increased (normalized) during rest periods. Critically, SN recruitment was high for both the regulate and the view conditions, a finding potentially indicative of CEN modality switching, adaptive learning, and increasing threat/defense processing in PTSD. In conclusion, this study provides provocative, preliminary evidence that downregulation of the amygdala using rt-fMRI-NFB in PTSD is associated with dynamic changes in ICN, an effect similar to those observed using EEG modalities of neurofeedback.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022274PMC
http://dx.doi.org/10.1002/hbm.24244DOI Listing

Publication Analysis

Top Keywords

intrinsic connectivity
8
real-time fmri
8
fmri neurofeedback
8
ptsd associated
8
changes icn
8
neurofeedback runs
8
view conditions
8
ptsd
6
neurofeedback
5
regulate
5

Similar Publications

The purpose was to explore the spatial centrality of the whole brain functional network related to migraine and to investigate the potential functional hubs associated with migraine. 32 migraine patients and 55 healthy controls were recruited and they received resting-state functional magnetic resonance imaging voluntarily. Voxel-wise Degree Centrality (DC) was measured across the whole brain, and group differences in DC were compared.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!