A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ferrodrop Dose-Optimized Digital Quantification of Biomolecules in Low-Volume Samples. | LitMetric

We present an approach to estimate the concentration of a biomolecule in a solution by sampling several nanoliter-scale volumes and determining if the volumes contain any biomolecules. In this method, varying volume fractions (nanoliter-scale) of a sample of nucleic acids are introduced to an array of uniform volume reaction wells (100 μL), which are then fluorescently imaged to determine if signal is above a threshold after nucleic acid amplification, all without complex instrumentation. The nanoliter volumes are generated and introduced using the simple positioning of a permanent magnet, and imaging is performed with a cellphone-based fluorescence detection scheme, both methods suitable for limited-resource settings. We use the length of time a magnetic field is applied to generate a calibrated number of nanoliter ferrodrops of sample mixed with ferrofluid at a step emulsification microfluidic junction. Each dose of ferrodrops is then transferred into larger microliter scale reaction wells on chip through a simple shift of the external magnet. Nucleic acid amplification is achieved using loop-mediated isothermal amplification (LAMP). By repeating each nanoliter dosage a number of times to calculate the probability of a positive signal at each dosage, we can use a binomial probability distribution to estimate the sample nucleic acid concentration. Using this approach we demonstrate detection of lambda DNA molecules down to 25 copies per microliter. The ability to dose separate nanoliter-scale volumes of a low-volume sample across wells in this platform is suited for multiplexed assays. This platform has the potential to be applied to a range of diseases by mixing a sample with magnetic nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b00958DOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
nanoliter-scale volumes
8
sample nucleic
8
reaction wells
8
acid amplification
8
sample
5
ferrodrop dose-optimized
4
dose-optimized digital
4
digital quantification
4
quantification biomolecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!