The presence of a feeder layer improves human corneal endothelial cell proliferation by altering the expression of the transcription factors Sp1 and NFI.

Exp Eye Res

CUO-Recherche, Médecine Régénératrice - Centre de recherche FRQS du CHU de Québec-Université Laval, Québec, Canada; Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada; Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada. Electronic address:

Published: November 2018

Based on the use of tissue-cultured human corneal endothelial cells (HCECs), cell therapy is a very promising avenue in the treatment of corneal endothelial pathologies such as Fuchs' dystrophy, and post-surgical corneal edema. However, once in culture, HCECs rapidly lose their phenotypic and physiological characteristics, and are therefore unsuitable for the reconstruction of a functional endothelial monolayer. Expression of NFI, a transcription factor that can either function as an activator or a repressor of gene transcription, has never been examined in endothelial cells. The present study therefore aimed to determine the impact of a non-proliferating, lethally irradiated i3T3 feeder layer on the maintenance of HCEC's morphological characteristics, and both the expression and stability of Sp1 (a strong transcriptional activator) and NFI in such cells. The typical morphology of endothelial cells was best maintained when 8 × 10/cm HCECs were co-cultured in the presence of 2 × 10 cells/cm i3T3. HCECs were found to express both Sp1 and NFI in vitro. Also, the presence of i3T3 led to higher levels of Sp1 and NFI in HCECs, with a concomitant increase in their DNA binding levels (assessed by electrophoretic mobility shift assays (EMSA)). Specifically, i3T3 increased the expression of the NFIA, NFIB and NFIC isoforms, without a noticeable increase in their mRNAs (as revealed by gene profiling on microarray). Gene profiling analysis also identified a few feeder layer-dependent, differentially regulated genes whose protein products may contribute to improving the properties of HCECs in culture. Therefore, co-culturing HCECs with an i3T3 feeder layer clearly improves their morphological characteristics by maintaining stable levels of Sp1 and NFI in cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2018.07.009DOI Listing

Publication Analysis

Top Keywords

sp1 nfi
16
feeder layer
12
corneal endothelial
12
endothelial cells
12
human corneal
8
i3t3 feeder
8
morphological characteristics
8
levels sp1
8
gene profiling
8
hcecs
7

Similar Publications

Background: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C.

View Article and Find Full Text PDF

Because of the worldwide shortage of graftable corneas, alternatives to restore visual impairments, such as the production of a functional human cornea by tissue engineering, have emerged. Self-renewal of the corneal epithelium through the maintenance of a sub-population of corneal stem cells is required to maintain the functionality of such a reconstructed cornea. We previously reported an association between stem cell differentiation and the level to which they express the transcription factors Sp1 and NFI.

View Article and Find Full Text PDF

The presence of a feeder layer improves human corneal endothelial cell proliferation by altering the expression of the transcription factors Sp1 and NFI.

Exp Eye Res

November 2018

CUO-Recherche, Médecine Régénératrice - Centre de recherche FRQS du CHU de Québec-Université Laval, Québec, Canada; Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada; Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada. Electronic address:

Based on the use of tissue-cultured human corneal endothelial cells (HCECs), cell therapy is a very promising avenue in the treatment of corneal endothelial pathologies such as Fuchs' dystrophy, and post-surgical corneal edema. However, once in culture, HCECs rapidly lose their phenotypic and physiological characteristics, and are therefore unsuitable for the reconstruction of a functional endothelial monolayer. Expression of NFI, a transcription factor that can either function as an activator or a repressor of gene transcription, has never been examined in endothelial cells.

View Article and Find Full Text PDF

Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes.

View Article and Find Full Text PDF

Unlabelled: MicroRNAs (miRNAs) play an important role in the regulation of immune responses. Previous studies have indicated that dysregulating the miRNAs leads to the immunosuppression of porcine reproductive and respiratory syndrome virus (PRRSV). However, it is not clear how PRRSV regulates the expression of host miRNA, which may lead to immune escape or promote the replication of the virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!