Modulating protein interaction pathways may lead to the cure of many diseases. Known protein-protein inhibitors bind to large pockets on the protein-protein interface. Such large pockets are detected also in the protein-protein complexes without known inhibitors, making such complexes potentially druggable. The inhibitor-binding site is primary defined by the side chains that form the largest pocket in the protein-bound conformation. Low-resolution ligand docking shows that the success rate for the protein-bound conformation is close to the one for the ligand-bound conformation, and significantly higher than for the apo conformation. The conformational change on the protein interface upon binding to the other protein results in a pocket employed by the ligand when it binds to that interface. This proof-of-concept study suggests that rather than using computational pocket-opening procedures, one can opt for an experimentally determined structure of the target co-crystallized protein-protein complex as a starting point for drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640133PMC
http://dx.doi.org/10.1007/s10822-018-0124-zDOI Listing

Publication Analysis

Top Keywords

ligand docking
8
large pockets
8
protein-bound conformation
8
protein-protein
5
inhibition protein
4
protein interactions
4
interactions co-crystalized
4
co-crystalized protein-protein
4
protein-protein interfaces
4
interfaces good
4

Similar Publications

Unraveling the mechanisms of benzimidazole resistance in hookworms: A molecular docking and dynamics study.

J Genet Eng Biotechnol

March 2025

Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Background: Benzimidazole resistance is an emerging challenge among parasitic helminths. It is caused by single nucleotide polymorphisms (SNPs) in specific loci in helminths' β-tubulin genes. Field studies and laboratory investigations reported resistance-associated SNPs in 4 codon locations with 7 allelic variations among hookworms.

View Article and Find Full Text PDF

Background: Cancer remains an awful challenge, despite years of targeting proteins to control its relentless growth and spread. Fungal metabolites, a treasure of natural chemicals, offer a glimmer of hope. Telomeres, the cellular "caps," are a focal point in cancer research.

View Article and Find Full Text PDF

Objective:  The goal is to analyze the osteogenesis potential of polymethylmethacrylate (PMMA)-hydroxyapatite (HA) and stem cells from human exfoliated deciduous teeth (SHED) as a biomaterial candidate for alveolar bone defect therapy through a bioinformatic approach within an study.

Materials And Methods:  Three-dimensional (3D) ligand structures consisting of HA, PMMA, and target proteins of SHED were obtained from the PubChem database. STITCH was used for SHED target protein analysis, STRING was utilized for analysis and visualization of protein pathways related to osteogenesis, PASS Online was employed to predict biological functions supporting osteogenesis potential, PyRx 0.

View Article and Find Full Text PDF

New perspectives on the taste mechanisms of umami and bitter peptides in low-salt fermented fish sauce based on peptidomics, molecular docking and molecular dynamics.

Food Funct

March 2025

Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.

Umami and bitter peptides generated by microbial metabolism are essential to the taste of low-salt fish sauce. However, the uncertain taste mechanisms of peptides hinder the efficient identification of high-intensity taste peptides in fish sauce. Our study investigated the taste mechanisms of umami or bitter peptides from low-salt fish sauce fermented with .

View Article and Find Full Text PDF

This study investigates the anticholinesterase (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE]) and carbonic anhydrase (CAI and CAII) inhibitory activities of carnosic acid and its natural derivatives, including carnosol, rosmanol, 7-methoxy-rosmanol, 12-methoxy-carnosic acid, and isorosmanol. Among the tested compounds, rosmanol demonstrated exceptional potency, with IC values of 0.73 nM for AChE and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!