Pharm Res
University of Minnesota, Minneapolis, Minnesota, USA.
Published: July 2018
The treatment of metastatic lesions in the brain represents a serious unmet medical need in the field of neuro-oncology. Even though many effective compounds have demonstrated success in treating peripheral (non-CNS) tumors with targeted agents, one aspect of this lack of success in the brain may be related to poor delivery of otherwise effective compounds. Many factors can influence the brain delivery of these agents, but one key barrier is a heterogeneously "leaky" BBB that expresses efflux transporters that limit the BBB permeability for many targeted agents. Future success in therapeutics for brain metastases must take into account the adequate delivery of "active, free drug" to the target, and may include combinations of targeted drugs that are appropriate to address each individual patient's tumor type. This review discusses some issues that are pertinent to precision medicine for brain metastases, using specific examples of tumor types that have a high incidence of brain metastases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700736 | PMC |
http://dx.doi.org/10.1007/s11095-018-2455-9 | DOI Listing |
Heliyon
January 2025
School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Bevacizumab is widely used in various clinical indications, but investigations into its optimal dosage for treating CNS metastases remain limited. The BEEP regimen, comprising bevacizumab, etoposide, and cisplatin, has recently demonstrated promising clinical outcomes for patients with breast cancer brain metastasis (BCBM) or leptomeningeal metastasis (LM). This study aimed to evaluate the exposure-response relationship of bevacizumab in BCBM patients and to explore the improved CNS penetration of chemotherapy by bevacizumab with LM patients.
View Article and Find Full Text PDFCancer Res
January 2025
Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
Mouse models that faithfully represent the biology of human brain tumors are critical tools for unraveling the underlying tumor biology and screening for potential precision therapies. This is especially true of rare tumor types, many of which have correspondingly few xenograft or cell lines available. Although our understanding of the specific biological pathways driving cancer has improved significantly, identifying the appropriate progenitor populations to drive oncogenic processes represents a significant barrier to efficient mouse model production.
View Article and Find Full Text PDFCancer Res Treat
January 2025
Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul, Korea.
Purpose: Ninjury-induced protein 1 (Ninj1) is associated with inflammation and tumor progression and shows increased expression in various cancers. This study aimed to investigate the role of Ninj1 in colitis-associated colorectal cancer (CRC) by focusing on its interaction with 17β-estradiol (E2).
Materials And Methods: Using an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model of colitis-associated CRC, wild-type (WT) and Ninj1 knockout (KO) male mice were treated with or without E2.
J Nanobiotechnology
January 2025
Department of Pharmacy The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
Recent technologic advancements have facilitated the use of hypofractionated Gamma Knife-based radiosurgery (HF-GKRS) to treat large lesions or those in eloquent areas. This study aimed to analyze the preliminary results of HF-GKRS for these meningiomas, and to determine its effectiveness and safety. This single-center retrospective study analyzed data of patients who underwent HF-GKRS for large meningiomas or those in eloquent areas with > 6 months of follow-up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.