A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of estrogens and antiestrogens on gonadal sex differentiation and embryonic development in the domestic fowl (). | LitMetric

Since it is known that environmental contaminants have the potential to cause endocrine disorders in humans and animals, there is an urgent need for in vivo tests to assess possible effects of these endocrine disrupting chemicals (EDCs). Although there is no standardized guideline, the avian embryo has proven to be particularly promising as it responds sensitively to a number of EDCs preferentially impacting the reproductive axis. In the present study we examined the effects of in ovo exposure to fulvestrant and tamoxifen as antiestrogenic model compounds and co-exposure to both substances and the potent estrogen 17α-ethinylestradiol (EE) regarding sex differentiation and embryonic development of the domestic fowl (). The substances were injected into the yolk of fertilized eggs on embryonic day 1. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Sole EE-treatment (20 ng/g egg) particularly affected male gonads and resulted in an increased formation of female-like gonadal cortex tissue and a reduction of seminiferous tubules. In ovo exposure to tamoxifen (0.1/1/10 µg/g egg) strongly impaired the differentiation of female gonads, led to a significant size reduction of the left ovary and induced malformations of the ovarian cortex, while fulvestrant (0.1/1/10 µg/g egg) did not affect sexual differentiation. However, both antiestrogens were able to antagonize the feminizing effects of EEin genetic males when administered simultaneously. Since both estrogens and antiestrogens induce concentration-dependent morphological alterations of the sex organs, the chick embryo can be regarded as a promising model for the identification of chemicals with estrogenic and antiestrogenic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034593PMC
http://dx.doi.org/10.7717/peerj.5094DOI Listing

Publication Analysis

Top Keywords

estrogens antiestrogens
8
sex differentiation
8
differentiation embryonic
8
embryonic development
8
development domestic
8
domestic fowl
8
ovo exposure
8
embryonic day
8
01/1/10 µg/g
8
µg/g egg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!