Delivery of Immunomodulatory Microparticles in a Murine Model of Rotator Cuff Tear.

MRS Adv

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States.

Published: January 2018

Full thickness rotator cuff tears (RCT) and the associated muscle degeneration that results due to this injury presents a significant clinical burden. The prevention or recovery from this degeneration requires the synchronized behavior of many cells that participate in regeneration. Strategies that tune the inflammatory cascade that is initiated after injury serves as a powerful way to influence tissue repair. Here, we use the local, sustained delivery of the immunomodulatory small molecule FTY720 to examine whether the recruitment of pro-regenerative myeloid cells affects the healing outcome. We find that PLGA microparticles have an atrophic effect on the muscle that is ameliorated with the release of FTY720. However, the inability of FTY720 delivery to induce pro-regenerative monocyte and macrophage recruitment and our findings demonstrating enrichment of CD4+ T cells suggest that effects of this small molecule are context dependent and that the underlying mechanisms behind this RCT associated muscle degeneration require further studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039128PMC
http://dx.doi.org/10.1557/adv.2018.50DOI Listing

Publication Analysis

Top Keywords

delivery immunomodulatory
8
rotator cuff
8
rct associated
8
associated muscle
8
muscle degeneration
8
small molecule
8
immunomodulatory microparticles
4
microparticles murine
4
murine model
4
model rotator
4

Similar Publications

Tumor immunotherapy, modulating innate and adaptive immunity, has become an important therapeutic strategy. However, the tumor immune microenvironment's (TIME) complexity and heterogeneity challenge tumor immunotherapy. Hydrogel is a hydrophilic three-dimensional (3D) mesh structure with good biocompatibility and drug release control, which is widely used in drug delivery, agriculture, industry, etc.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Sequential delivery of IL-10 and icariin using nanoparticle/hydrogel hybrid system for prompting bone defect repair.

Mater Today Bio

December 2024

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.

The treatment of large bone defects remains challenging due to the lack of spatiotemporal management of the immune microenvironment, inflammation response and bone remodeling. To address these issues, we designed and developed a nanoparticle/hydrogel hybrid system that can achieve the combined and sequential delivery of an anti-inflammatory factor (IL-10) and osteogenic drug (icariin, ICA). A photopolymerizable composite hydrogel was prepared by combining gelatin methacryloyl (GelMA) and heparin-based acrylated hyaluronic acid (HA) hydrogels containing IL-10, and poly(dl-lactide-co-glycolide) (PLGA)-HA nanoparticles loaded with ICA were incorporated into the composite hydrogels.

View Article and Find Full Text PDF

Vitiligo is a complex dermatological disorder involving the loss of melanocytes, with resultant patches of depigmentation. It affects 1% of the world population, affecting patients' mental health and quality of life. With all the improvement seen, conventional treatment methods-steroids, phototherapy, and immunomodulators-come with the limitations of being less effective, having more side effects, and low compliance.

View Article and Find Full Text PDF

Immunomodulatory and anti-ovarian cancer effects of novel astragalus polysaccharide micelles loaded with podophyllotoxin.

Int J Biol Macromol

December 2024

School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China. Electronic address:

Ovarian cancer, a highly lethal form of gynecological cancer globally, has witnessed notable advancements in its treatment through the integration of nanotechnology and immunotherapy. Here, we designed a novel astragalus polysaccharide vector (PDA), encapsulating podophyllotoxin (PPT), and modifying methotrexate (DSPE-PEG-MTX) on its surface for targeting ovarian cancer cells with high folate receptor expression. We prepared novel MTX-modified PPT-loaded astragalus polysaccharide micelles (MTX-PPT-micelles) by dialysis method and evaluated their characterization, stability, safety and targeting ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!