Network theory provides an intuitively appealing framework for studying relationships among interconnected brain mechanisms and their relevance to behaviour. As the space of its applications grows, so does the diversity of meanings of the term network model. This diversity can cause confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary collaboration. In this Review, we examine the field of network neuroscience, focusing on organizing principles that can help overcome these challenges. First, we describe the fundamental goals in constructing network models. Second, we review the most common forms of network models, which can be described parsimoniously along the following three primary dimensions: from data representations to first-principles theory; from biophysical realism to functional phenomenology; and from elementary descriptions to coarse-grained approximations. Third, we draw on biology, philosophy and other disciplines to establish validation principles for these models. We close with a discussion of opportunities to bridge model types and point to exciting frontiers for future pursuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466618 | PMC |
http://dx.doi.org/10.1038/s41583-018-0038-8 | DOI Listing |
The connectome describes the complete set of synaptic contacts through which neurons communicate. While the architecture of the $\textit{C. elegans}$ connectome has been extensively characterized, much less is known about the organization of causal signaling networks arising from functional interactions between neurons.
View Article and Find Full Text PDFEClinicalMedicine
August 2024
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom.
Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.
View Article and Find Full Text PDFCharacterizing brain dynamic functional connectivity (dFC) patterns from functional Magnetic Resonance Imaging (fMRI) data is of paramount importance in neuroscience and medicine. Recently, many graph neural network (GNN) models, combined with transformers or recurrent neural networks (RNNs), have shown great potential for modeling the dFC patterns. However, these methods face challenges in effectively characterizing the modularity organization of brain networks and capturing varying dFC state patterns.
View Article and Find Full Text PDFUnlabelled: The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice.
View Article and Find Full Text PDFEClinicalMedicine
November 2024
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
Background: Attention deficit hyperactivity disorder (ADHD) is one prevalent neurodevelopmental disorder with childhood onset, however, there is no clear correspondence established between clinical ADHD subtypes and primary medications. Identifying objective and reliable neuroimaging markers for categorizing ADHD biotypes may lead to more individualized, biotype-guided treatment.
Methods: Here we proposed a graph convolution network for biological subtype detection (GCN-BSD) using both functional network connectivity (FNC) and non-imaging phenotypic data for ADHD biotype.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!