Resveratrol, a safe and multitargeted natural agent, has been linked with inhibition of survival and invasion of tumor cells. Tumor Necrosis Factor-β (TNF-β) (Lymphotoxin α) is known as an inflammatory cytokine, however, the underlying mechanisms for its pro-carcinogenic effects and whether resveratrol can suppress these effects in the tumor microenvironment are poorly understood. We investigated whether resveratrol modulates the effects of 5-Fluorouracil (5-FU) and TNF-β on the malignant potential of human colorectal cancer (CRC) cells (HCT116) and their corresponding isogenic 5-FU-chemoresistant derived clones (HCT116R) in 3D-alginate tumor microenvironment. CRC cells cultured in alginate were able to migrate from alginate and the numbers of migrated cells were significantly increased in the presence of TNF-β, similar to TNF-α, and dramatically decreased by resveratrol. We found that TNF-β promoted chemoresistance in CRC cells to 5-FU compared to control cultures and resveratrol chemosensitizes TNF-β-induced increased capacity for survival and invasion of HCT116 and HCT116R cells to 5-FU. Furthermore, TNF-β induced a more pronounced cancer stem cell-like (CSC) phenotype (CD133, CD44, ALDH1) and resveratrol suppressed formation of CSC cells in two different CRC cells and this was accompanied with a significant increase in apoptosis (caspase-3). It is noteworthy that resveratrol strongly suppressed TNF-β-induced activation of tumor-promoting factors (NF-κB, MMP-9, CXCR4) and epithelial-to-mesenchymal-transition-factors (increased vimentin and slug, decreased E-cadherin) in CRC cells. Our results clearly demonstrate for the first time that resveratrol modulates the TNF-β signaling pathway, induces apoptosis, suppresses NF-κB activation, epithelial-to-mesenchymal-transition (EMT), CSCs formation and chemosensitizes CRC cells to 5-FU in a tumor microenvironment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073304 | PMC |
http://dx.doi.org/10.3390/nu10070888 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!