Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073271PMC
http://dx.doi.org/10.3390/ijms19072023DOI Listing

Publication Analysis

Top Keywords

aba
10
abscisic acid
8
acid aba
8
drought stress
8
aba biosynthesis
8
discuss potential
8
aba production
8
plant
6
stress
5
versus ground
4

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Nudges for people who think.

Psychon Bull Rev

January 2025

School of Psychology, UNSW Sydney, Sydney, Australia.

The naiveté of the dominant 'cognitive-miser' metaphor of human thinking hampers theoretical progress in understanding how and why subtle behavioural interventions-'nudges'-could work. We propose a reconceptualization that places the balance in agency between, and the alignment of representations held by, people and choice architects as central to determining the prospect of observing behaviour change. We argue that two aspects of representational (mis)alignment are relevant: cognitive (how people construe the factual structure of a decision environment) and motivational (the importance of a choice to an individual).

View Article and Find Full Text PDF

Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.

View Article and Find Full Text PDF

OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.

Plant Physiol Biochem

December 2024

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.

View Article and Find Full Text PDF

Subanesthetic Ketamine Ameliorates Activity-Based Anorexia of Adult Mice.

Synapse

January 2025

Center for Neural Science, New York University, New York, New York, USA.

Objective: Anorexia nervosa (AN) is an eating disorder with the second highest mortality of all mental illnesses and high relapse rate, especially among adult females, yet with no accepted pharmacotherapy. A small number of studies have reported that adult females who struggled with severe and relapsing AN experienced sustained remission of the illness following ketamine infusions. Two other reports showed that 30 mg/kg IP ketamine can reduce vulnerability of adolescent mice to activity-based anorexia (ABA), an animal model of AN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!