Background: Exosomes are small vesicles containing a wide range of functional proteins, mRNA and miRNA. Exosomal miRNAs from cancer cells play crucial roles in mediating cell-cell communication and tumor-microenvironment cross talk, specifically in enabling metastasis and promoting angiogenesis. We focused on miR-9 that was identified as a tumor suppressor previously in nasopharyngeal carcinoma (NPC) tumorigenesis.

Methods: Differential centrifugation, transmission electron microscopy and nanoparticle tracking analysis were used to isolate and identify exosomes. Quantitative PCR and western blotting analysis were used to detect miR-9, pri-miR-9, CD63, TSG101, MDK, P70S6K P-Ser424 and PDK1 P-Ser241 expression. Laser confocal microscopy was used to trace exosomal miR-9 secreted by NPC cells into HUVECs. The effect of exosomal miR-9 on cell migration and tube formation of HUVECs in vivo and vitro was assessed by using migration assay, tube formation assay and matrigel plug assay, respectively. Bioinformatics analysis and luciferase reporter assay were utilized to confirm the binding of exosomal miR-9 to the 3'untranslated region (3'-UTR) of MDK, while Phosphorylation Array was performed to identify AKT Pathway in HUVECs treated with exosomal miR-9. Furthermore, Immunohistochemistry (IHC) and in situ hybridization (ISH) was used to detected miR-9, CD31 and MDK expression in human NPC tumor samples.

Results: NPC cells transfected with miR-9-overexpressing lentivirus, released miR-9 in exosomes. Exosomal miR-9 directly suppressed its target gene - MDK in endothelial cells. Mechanistic analyses revealed that exosomal miR-9 from NPC cells inhibited endothelial tube formation and migration by targeting MDK and regulating PDK/AKT signaling pathway. Additionally, the level of MDK was upregulated in NPC tumor samples and was positively correlated with microvessel density. Notably, the level of exosomal miR-9 was positively correlated with overall survival, and MDK overexpression was positively associated with poor prognosis in NPC patients, suggesting the clinical relevance and prognostic value of exosomal miR-9 and MDK.

Conclusions: Taken together, our data identify an extracellular anti-angiogenic role for tumor-derived, exosome-associated miR-9 in NPC tumorigenesis and prompt further investigation into exosome-based therapies for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044044PMC
http://dx.doi.org/10.1186/s13046-018-0814-3DOI Listing

Publication Analysis

Top Keywords

exosomal mir-9
36
mir-9
13
npc cells
12
tube formation
12
exosomal
10
mdk
8
targeting mdk
8
mdk regulating
8
regulating pdk/akt
8
nasopharyngeal carcinoma
8

Similar Publications

Aims: This study aimed to explore the role and underlying mechanisms of brain-derived exosomes in traumatic brain injury-induced acute lung injury (TBI-induced ALI), with a particular focus on the potential regulation of ferroptosis through miRNAs and Scd1.

Methods: To elucidate TBI-induced ALI, we used a TBI mouse model. Exosomes were isolated from the brains of these mice and characterized using TEM and NTA.

View Article and Find Full Text PDF

Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice.

Nat Commun

December 2024

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.

Cancer cells secrete extracellular vesicles (EV) encapsulating bioactive cargoes to facilitate inter-organ communication in vivo and are emerging as critical mediators of tumor progression and metastasis, a condition which is often accompanied by a dysregulated cholesterol metabolism. Whether EVs are involved in the control of cholesterol homeostasis during tumor metastasis is still undefined and warrant further investigation. Here, we find that breast cancer-derived exosomal miR-9-5p induces the expression of HMGCR and CH25H, two enzymes involved in cholesterol synthesis and the conversion of 25-hydroxycholesterol from cholesterol by targeting INSIG1, INSIG2 and ATF3 genes in the liver.

View Article and Find Full Text PDF

FRK exerts oncogenic effects by targeting NQO2 via exosomal miR-9-3p to regulate mitochondrial function.

FASEB J

December 2024

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Article Synopsis
  • The study investigates how Fyn-related kinase (FRK) influences tumor growth and metabolism in non-small cell lung cancer (NSCLC) through exosomes.
  • Exosomes from FRK-knockout cells were shown to negatively impact NSCLC cell activities like proliferation and metabolism, highlighting the role of exosomal miR-9-3p.
  • The research suggests that FRK promotes NSCLC progression by regulating mitochondrial function via miR-9-3p targeting the protein NQO2.
View Article and Find Full Text PDF

Several microRNAs (miRNAs), including miR-221-5p, Let-7b-5p, miR-21-5p, miR-9-5p, miR-126-3p, and miR-222-3p, were recently found to be enriched in circulating exosomes of patients with non-small cell lung cancers (NSCLCs). These miRNAs distinguished cancer cases from controls with high precision and were predicted to modulate the expression of genes within the oncogenic LINE-1 regulatory network. To test this hypothesis, plasma exosomes from controls, early, and late-stage NSCLC patients were co-cultured with non-tumorigenic lung epithelial cells for 72 h and processed for measurements of gene expression.

View Article and Find Full Text PDF

Exosomal miRNAs Differentiate Chronic Total Occlusion from Acute Myocardial Infarction.

Int J Mol Sci

September 2024

Divisions of Cardiology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea.

Although coronary artery occlusion can have a negative effect on the myocardium, chronic total occlusion (CTO) exhibits different clinical features from those of acute myocardial infarction (AMI). In this study, we identify the differential associations of exosomal miRNAs with CTO and AMI. Exosomes were isolated from the plasma obtained from coronary arteries of patients undergoing percutaneous coronary intervention to treat CTO (n = 29) and AMI (n = 24), followed by small RNA sequencing, target gene predictions, and functional enrichment analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!