Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scope: To test whether myeloid cells Tsc1 deletion and therefore constitutive activation of the nutrient sensor mTORC1 protects from high-fat diet (HFD)-induced obesity, glucose intolerance, and adipose tissue inflammation.
Methods And Results: Mice with Tsc1 deletion in myeloid cells (MTsc1KO) and littermate controls (MTsc1WT) were fed with HFD for 8 weeks and evaluated for body weight, glucose homeostasis, and adipose tissue inflammation. MTsc1KO mice were protected from HFD-induced obesity and glucose intolerance. MTsc1KO, however, displayed, independently of the diet, abnormal behavior, episodes of intense movement, and muscle spasms followed by temporary paralysis. To investigate whether obesity protection was due to myeloid cells Tsc1 deletion, bone marrow was transplanted from MTsc1WT and MTsc1KO into irradiated C57BL6/J mice. Mice transplanted with MTsc1KO bone marrow displayed reduced body weight gain, adiposity, and inflammation, and enhanced energy expenditure, glucose tolerance and adipose tissue M2 macrophage content upon HFD feeding, in the absence of abnormal behavior. In vitro, Tsc1 deletion increased in a mTORC1-dependent manner macrophage polarization to M2 profile and mRNA levels of fatty acid binding protein 4 and PPARγ.
Conclusion: Constitutive mTORC1 activation in myeloid cells protects mice from HFD-induced obesity, adipose tissue inflammation, and glucose intolerance by promoting macrophage polarization to M2 pro-resolution profile and increasing energy expenditure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201800283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!