A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secondary-Structure-Mediated Hierarchy and Mechanics in Polyurea-Peptide Hybrids. | LitMetric

Secondary-Structure-Mediated Hierarchy and Mechanics in Polyurea-Peptide Hybrids.

Biomacromolecules

Department of Materials Science and Engineering , University of Delaware, 127 The Green , Newark , Delaware 19716 , United States.

Published: August 2018

Peptide-polymer hybrids combine the hierarchy of biological species with synthetic concepts to achieve control over molecular design and material properties. By further incorporating covalent cross-links, the enhancement of molecular complexity is achieved, allowing for both a physical and covalent network. In this work, the structure and function of poly(ethylene glycol) (PEG)-network hybrids are tuned by varying peptide block length and overall peptide content. Here the impact of poly(ε-carbobenzyloxy-l-lysine) (PZLY) units on block interactions and mechanics is explored by probing secondary structure, PEG crystallinity, and hierarchical organization. The incorporation of PZLY reveals a mixture of α-helices and β-sheets at smaller repeat lengths ( n = 5) and selective α-helix formation at a higher peptide molecular weight ( n = 20). Secondary structure variations tailored the solid-state film hierarchy, whereby nanoscale fibers and microscale spherulites varied in size depending on the amount of α-helices and β-sheets. This long-range ordering influenced mechanical properties, resulting in a decrease in elongation-at-break (from 400 to 20%) with increasing spherulite diameter. Furthermore, the reduction in soft segment crystallinity with the addition of PZLY resulted in a decrease in moduli. It was determined that, by controlling PZLY content, a balance of physical associations and self-assembly is obtained, leading to tunable PEG crystallinity, spherulite formation, and mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b00762DOI Listing

Publication Analysis

Top Keywords

secondary structure
8
peg crystallinity
8
α-helices β-sheets
8
secondary-structure-mediated hierarchy
4
hierarchy mechanics
4
mechanics polyurea-peptide
4
polyurea-peptide hybrids
4
hybrids peptide-polymer
4
peptide-polymer hybrids
4
hybrids combine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!