Desublimation Frosting on Nanoengineered Surfaces.

ACS Nano

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland.

Published: August 2018

Ice nucleation from vapor presents a variety of challenges across a wide range of industries and applications including refrigeration, transportation, and energy generation. However, a rational comprehensive approach to fabricating intrinsically icephobic surfaces for frost formation-both from water condensation (followed by freezing) and in particular from desublimation (direct growth of ice crystals from vapor)-remains elusive. Here, guided by nucleation physics, we investigate the effect of material composition and surface texturing (atomically smooth to nanorough) on the nucleation and growth mechanism of frost for a range of conditions within the sublimation domain (0 °C to -55 °C; partial water vapor pressures 6 to 0.02 mbar). Surprisingly, we observe that on silicon at very cold temperatures-below the homogeneous ice solidification nucleation limit (<-46 °C)-desublimation does not become the favorable pathway to frosting. Furthermore, we show that surface nanoroughness makes frost formation on silicon more probable. We experimentally demonstrate at temperatures between -48 °C and -55 °C that nanotexture with radii of curvature within 1 order of magnitude of the critical radius of nucleation favors frost growth, facilitated by capillary condensation, consistent with Kelvin's equation. Our findings show that such nanoscale surface morphology imposed by design to impart desired functionalities-such as superhydrophobicity-or from defects can be highly detrimental for frost icephobicity at low temperatures and water vapor partial pressures (<0.05 mbar). Our work contributes to the fundamental understanding of phase transitions well within the equilibrium sublimation domain and has implications for applications such as travel, power generation, and refrigeration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b03554DOI Listing

Publication Analysis

Top Keywords

desublimation frosting
4
frosting nanoengineered
4
nanoengineered surfaces
4
surfaces ice
4
nucleation
4
ice nucleation
4
nucleation vapor
4
vapor presents
4
presents variety
4
variety challenges
4

Similar Publications

Processes of water condensation and desublimation on solid surfaces are ubiquitous in nature and essential for various industrial applications, which are crucial for their performance. Despite their significance, these processes are not well understood due to the lack of methods that can provide insight at the nanolevel into the very first stages of phase transitions. Taking advantage of synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and environmental scanning electron microscopy (ESEM), two pathways of the frosting process from supersaturated vapors were studied in real time for substrates with different wettabilities ranging from highly hydrophilic to superhydrophobic.

View Article and Find Full Text PDF

Frost is considered one of the key factors that negatively affects numerous daily life aspects all over the globe such as growth of crops, safety of aviation and transportation vehicles, working efficiency of air circulating systems and many others. Therefore, monitoring and early detection of frost are crucially needed to avoid such drastic effects. In this study, we used the micron gap of our newly developed galvanic coupled arrays named as moisture sensor chip (MSC) for the early detection of frost formation from super-cooled water droplets.

View Article and Find Full Text PDF

Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review.

Adv Colloid Interface Sci

May 2020

Department of Applied Sciences, University of Quebec in Chicoutimi (UQAC), 555, boul. de l'Université, Chicoutimi, Québec G7H 2B1, Canada.

Icephobic surfaces, used as passive anti-icing materials, are in high demand due to the costs, damage, and loss of equipment and lives related to ice formation on outdoor surfaces. The proper design of icephobic surfaces is intertwined with the need for a profound understanding of ice formation processes and how ice propagates over a surface. Ice formation (ice nucleation) and interdroplet freezing propagation are processes that determine the onset of freezing and complete ice coverage on a surface, respectively.

View Article and Find Full Text PDF

Desublimation Frosting on Nanoengineered Surfaces.

ACS Nano

August 2018

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland.

Ice nucleation from vapor presents a variety of challenges across a wide range of industries and applications including refrigeration, transportation, and energy generation. However, a rational comprehensive approach to fabricating intrinsically icephobic surfaces for frost formation-both from water condensation (followed by freezing) and in particular from desublimation (direct growth of ice crystals from vapor)-remains elusive. Here, guided by nucleation physics, we investigate the effect of material composition and surface texturing (atomically smooth to nanorough) on the nucleation and growth mechanism of frost for a range of conditions within the sublimation domain (0 °C to -55 °C; partial water vapor pressures 6 to 0.

View Article and Find Full Text PDF

On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

Langmuir

August 2016

Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States.

Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!