AI Article Synopsis

  • - This study investigates lipid accumulation in Chlorella sp. microalgae for biodiesel production, highlighting the impact of environmental factors like light conditions on lipid content.
  • - Researchers employed visible near-infrared spectroscopy (Vis/NIRs) and hyperspectral imaging to monitor and visualize lipid changes throughout the microalgae's growth cycle, notably observing stable lipid levels in early growth and an increase during the late exponential phase.
  • - A multiple linear regression (MLR) model demonstrated strong predictive ability for lipid content, showcasing differences in spectra characteristics between Vis/NIRs and hyperspectral imaging, thus establishing their viability for non-destructive lipid change detection in microalgae.

Article Abstract

Microalgae based biodiesel production requires a large amount of lipid accumulation in the cells, and the accumulation is greatly influenced by the environment. Therefore, it is necessary to find fast and non-destructive methods for lipid change detection. In this paper, Chlorella sp. was adopted as the objective, which was cultured under different light condition consisted of red and blue lights with different proportion. We applied the visible near-infrared spectroscopy (Vis/NIRs) technique to detect the dynamic change of lipid during the microalgae growth processes and utilized hyperspectral imaging technology for visualization of lipid distribution in the suspension. The transmittance and reflectance spectra of microalgae were acquired with Vis/NIRs and hyper-spectroscopy, respectively. In the comparison of the transmittance and reflectance spectra, they showed some different characteristics. Meanwhile it also varied in terms of the number and the area of feature wavelengths obtained by successive projections algorithm (SPA) based on the different spectra. But the established multiple linear regression (MLR) model for lipid content prediction had similar results with rpre of 0.940, RMSEP of 0.003 56 and rpre of 0.932, RMSEP of 0.004 23, respectively. Based on the predictive model, we obtained the spectra and analyzed the lipid dynamic change in microalgae in one life cycle. In the life cycle, the lipid content in Chlorella sp. was relatively stable from the beginning of inoculation to exponential phase, the increase and accumulation of lipid phenomenon occurred in the late exponential phase. Combined with the MLR model and the hypersepctral images, we studied the visualization result of microalgae suspension in the steady phase. The stimulated images showed that the microalgae with higher lipid content appeared gathering. This study compared the difference and the feasibility of the Vis/NIRs and hyperspectral imaging technique in lipid content detection applied in microalgae growing microalgae. The results are meaningful for the fast and non-destructive detection of the growth information of microalgae. It has boththeoretical and practical significance for developing microalgal culture and harvest strategy in practice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lipid content
20
lipid
11
microalgae
9
change lipid
8
content chlorella
8
fast non-destructive
8
dynamic change
8
hyperspectral imaging
8
transmittance reflectance
8
reflectance spectra
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!