Acute kidney injury (AKI) incidence among hospitalized patients is increasing steadily. Despite progress in prevention strategies and support measures, AKI remains correlated with high mortality, particularly among ICU patients, and no effective AKI therapy exists. Here, we investigated the function in kidney ischaemia-reperfusion injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame on chromosome 1. C1orf54 expression was high in kidney and low in heart, liver, spleen, lung and skeletal muscle in healthy mice, and in the kidney, C1orf54 was expressed in tubular epithelial cells (TECs), but not in glomeruli. C1orf54 expression was markedly decreased on Day 1 after kidney IRI and then gradually recovered to baseline levels by Day 7. Notably, relative to wild-type mice, C1orf54-knockout mice exhibited impaired TEC proliferation and delayed recovery after kidney IRI, which led to deteriorated renal function and increased mortality. Conversely, adenovirus-mediated C1orf54 overexpression promoted TEC proliferation and ameliorated kidney pathology, which resulted in accelerated renal repair and improved renal function. Mechanistically, C1orf54 was found to promote TEC proliferation through PI3K/AKT signalling. Thus, C1orf54 holds considerable potential as a therapeutic target in kidney IRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156286 | PMC |
http://dx.doi.org/10.1111/jcmm.13765 | DOI Listing |
Mol Immunol
January 2025
Department of Urology, Renmin Hospital of Wuhan University. Wuhan, Hubei Province, PR China. Electronic address:
Background: Renal ischemia-reperfusion injury (IRI) is a prevailing manifestation of acute kidney injury (AKI) with limited treatment options. TRIM44 has emerged as a possible target for treatment due to its regulatory function in inflammatory pathways.
Methods: In vivo and in vitro models were employed to ascertain the TRIM44 impact on renal IRI.
FASEB J
January 2025
Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China.
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Clinical Studies Group, Randox Laboratories Ltd, Crumlin, United Kingdom.
Background: In patients undergoing orthopaedic trauma surgery, acute kidney injury (AKI) can develop post-operatively and is a major cause of increased mortality and hospital stay time. Development of AKI is associated with three main processes: inflammation, ischaemia-reperfusion injury (IRI) and hypoperfusion. In this study, we investigated whether ratios of urine and blood anti-inflammatory biomarkers and biomarkers of hypoperfusion, IRI and inflammation are elevated in patients who develop post-trauma orthopaedic surgery acute kidney injury (PTOS-AKI).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!