An Optimized System for Effective Derivation of Three-Dimensional Retinal Tissue via Wnt Signaling Regulation.

Stem Cells

State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.

Published: November 2018

Effective derivation of three-dimensional (3D) retinal tissue from human-induced pluripotent stem cells (hiPSCs) could provide models for drug screening and facilitate patient-specific retinal cell replacement therapy. However, some hiPSC lines cannot undergo 3D self-organization and show inadequate differentiation efficiency to meet clinical demand. In this study, we developed an optimized system for derivation of 3D retinal tissue. We found that the Wnt signaling pathway antagonist Dickkopf-related protein 1 (DKK-1) rescued the inability of differentiated retinal progenitors to self-organize. By evaluating DKK-1 expression and supplying DKK-1 if necessary, retinal organoids were differentiated from six hiPSC lines, which were reprogramed from three common initiating cell types. Retinal tissues derived from the optimized system were well organized and capable of surviving for further maturation. Thus, using this system, we generated retinal tissues from various hiPSC lines with high efficiency. This novel system has many potential applications in regenerative therapy and precision medicine. Stem Cells 2018;36:1709-1722.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.2890DOI Listing

Publication Analysis

Top Keywords

optimized system
12
retinal tissue
12
hipsc lines
12
effective derivation
8
derivation three-dimensional
8
retinal
8
three-dimensional retinal
8
tissue wnt
8
wnt signaling
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!