Future year ozone source attribution modeling study using CMAQ-ISAM.

J Air Waste Manag Assoc

c Air Sciences Division, Ramboll US Corporation , Novato , CA , USA.

Published: November 2018

To achieve the current United States National Ambient Air Quality Standards (NAAQS) attainment level for ozone or particulate matter, current photochemical air quality models include tools to determine source apportionment and/or source sensitivity. Previous studies by the authors have used the Ozone and Particulate Matter Source Apportionment Technology and Higher-order Decoupled Direct Method probing tools in CAMx to investigate these source-receptor relationships for ozone. The recently available source apportionment for CMAQ, referred to as the Integrated Source Apportionment Method (ISAM), was used in this study to conduct future year (2030) source attribution modeling. The CMAQ-ISAM ozone source attribution results for selected cities across the U.S. showed boundary conditions were the dominant contributor to the future year highest July maximum daily 8-hour average (MDA8) ozone concentrations. Point sources were generally larger contributors in the eastern U.S. than in the western U.S. The contributions of on-road mobile emissions were around 5 ppb at most of the cities selected for analysis. Off-road mobile source contributions were around 20 ppb or nearly 30%. Since boundary conditions play an important role in future year ozone levels, it is important to characterize future year boundary conditions accurately. The current implementation of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, making it difficult to conduct long-term simulations for large domains. The computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM. If an efficient version of ISAM becomes available, it could be used in long-term ozone and PM2.5 studies. Implications: Ozone source attribution results provide useful information on important emission source contribution categories and provide some initial guidance on future emission reduction strategies. This study explains a new source apportionment technique, CMAQ-ISAM, and compares it to CAMx OSAT. The techniques have similar results: ozone's highest source contributor is boundary conditions, followed by point sources, then off-road mobile sources. The current version of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, while the computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2018.1496954DOI Listing

Publication Analysis

Top Keywords

source attribution
32
ozone source
24
future year
20
source apportionment
20
source
17
boundary conditions
16
ozone
11
year ozone
8
attribution
8
attribution modeling
8

Similar Publications

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

While consensus exists that the sources of health inequalities are social inequalities brought on by the experience of qualitatively different living and working conditions, means of addressing these conditions continue to be the subject of dispute. Whether to emphasis education or income as asocial determinant of health is one such example of differing views on the sources of these inequalities and the means of addressing them. These different emphases are often justified through the narrow examination of the magnitude of statistical relationships between educational attainment and income with health outcomes.

View Article and Find Full Text PDF

This study investigates the spatio-temporal consistency of different MMDI formulations and their role in meteorological drought characterization uncertainty under historic and future climates using ERA5 reanalysis, and outputs from eight Coupled Model Intercomparison Project Phase 6 models, respectively, across different climate zones and shared socioeconomic pathways (SSP) in the Indian subcontinent. Six MMDI formulations namely the Standardized Precipitation Evaporation Index (SPEI), Reconnaissance Drought Index (RDI), and self-calibrated Palmer Drought Severity Index (scPDSI), Standardized Palmer Drought Index (SPDI), Standardized Moisture Anomaly Index (SZI) and Supply Demand Drought Index (SDDI) are used. A suite of analysis including agreement mapping, category difference analysis and uncertainty contribution analysis using global sensitivity analysis (GSA) are employed to quantify the consistency of MMDIs and uncertainty in drought characterization due to the MMDI formulation.

View Article and Find Full Text PDF

Access to information about chemicals in products and articles is critical for supporting enforcement of chemical regulations, assessing risks from chemicals, allowing informed consumer choices, and enabling product circularity. In this work, we identified and evaluated available databases (DBs) on chemicals in products and articles from the literature using a defined protocol and from European national market surveillance authorities, nongovernmental agencies, and industrial sector groups using questionnaires. This is the first comprehensive review of DBs that provide information about chemicals in products and articles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!