In order to improve the quality of food and to extend their shelf life, a new generation of active edible films is being especially intended after the incorporation of organic acids, enzymes, antimicrobial proteins, phenolic compounds, or other functional ingredients such as probiotics, flavors, vitamins and nutraceuticals. These active compounds have different mechanisms of action related to their structure, their concentration, the nature of micro-organism targeted, the process of encapsulation or incorporation in the biopolymer film-networks. The application of the active films by direct contact or indirect contact via the head space also affects the bioactivity of these compounds. This article critically reviews the published work on active edible-films and their applications for food preservation. The classes of active compounds and their action mechanisms are firstly discussed. Then, an extended overview on their effect on model food (simulants) or on real food during storage was also addressed. Edible films offer two main advantages over the direct incorporation of the antimicrobial or antioxidant agents into the bulk food: 1) to control the diffusion of active compounds at the surface of the food and 2) to reduce the amount of preservatives added in the food.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2018.1494132DOI Listing

Publication Analysis

Top Keywords

edible films
12
active compounds
12
food
8
antimicrobial antioxidant
8
active
6
compounds
5
bioactive edible
4
films
4
films food
4
food applications
4

Similar Publications

The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.

View Article and Find Full Text PDF

Development of Alginate-Chitosan Bioactive Films Containing Essential Oils for Use in Food Packaging.

Foods

January 2025

Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile.

The effect on the physical, mechanical, and antibacterial properties of films composed of alginate-chitosan with the incorporation of oregano (EOO) or thyme (EOT) essential oils was evaluated. These films showed a thickness between 37.7 and 38.

View Article and Find Full Text PDF

Development of edible films based on sweet potato (Ipomoea batatas) starch and their application in candy packaging.

Int J Biol Macromol

January 2025

Department Food Engineering, Universidad de Córdoba, Montería, Colombia. Electronic address:

Recent studies have focused on the generation of biomaterials from natural sources, highlighting the use of starch from different sources to obtain edible films and coatings. In this study, edible films were developed from sweet potato starch, and their potential use in candy packaging was evaluated. Films were prepared by the casting method, and the effects of sweet potato starch (3 %-5 % w/w), glycerol (0.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

Two plasticizers with distinct properties are carefully studied in this research for their suitability in creating biocomposite edible film products. The study uncovers films' physical, tensile, and biodegradability attributes, using snakehead gelatin and ĸ-carrageenan in different concentrations, with sorbitol or glycerol as plasticizers. The biomaterials of the edible film consist of snakehead gelatin () 2% (/); ĸ-carrageenan at concentrations of 1%, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!