The irradiation of aqueous acetonitrile solutions, containing electron deficient alkenes, dienes and active methylene compounds along with sodium or cesium carbonate and catalytic amounts of phenanthrene or pyrene, gives rise to the formation of novel three-component coupling products and diene dimers. Cinnamonitrile and benzylidenemalononitrile and its derivatives serve as electron-acceptors; 2,5-dimethyl-2,4-hexadiene and malononitrile anion serve as electron donors in this process. Based on the results of UV-vis absorption spectroscopy and the calculated ΔG values for single electron transfer (SET), mechanisms are proposed for the coupling reaction involving photoinduced electron transfer (PET) between the electron deficient alkenes and dienes or malononitrile anion via direct excitation of electron deficient alkenes or redox photosensitization using phenanthrene or pyrene serving as a photosensitizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8pp00239h | DOI Listing |
Free Radic Biol Med
January 2025
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Biomolecules
December 2024
Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan.
Nicotinamide adenine dinucleotide (NAD) is a critical cofactor in mitochondrial energy production. The NADH/NAD ratio, reflecting the balance between NADH (reduced) and NADoxidized, is a key marker for the severity of mitochondrial diseases. We recently developed a streamlined LC-MS/MS method for the precise measurement of NADH and NAD.
View Article and Find Full Text PDFSmall
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!