As security needs have increased, mechanism investigation has become of high importance in the development of new sensitive and selective chemosensors for chemical explosives. This study details a theoretical investigation of the sensing mechanism of a new phosphonate pyrene chemosensor for trinitrotoluene (TNT), suggesting a different interaction mode between the probe and TNT from the one previously reported. The invalidity of the mechanism of binding TNT through intermolecular hydrogen bonds was proved using the Gibbs free energy profile and 1H NMR analysis. Frontier molecular orbitals (FMOs) analysis was used to show that photo-induced electron transfer (PET) is the underlying mechanism behind the luminescence quenching of the probe upon exposure to TNT, the rationality of which was further confirmed by the recording of a high charge transfer rate. We also found the existence of an energy level crossing between the local excited (LE) state and charge transfer (CT) state of a complex of the probe and TNT, which was confirmed using energy profile calculations along the linearly interpolated internal coordinate (LIIC) pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp01749b | DOI Listing |
J Fluoresc
January 2025
Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01811, Korea.
We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.
View Article and Find Full Text PDFNeuromodulation
January 2025
Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, USA. Electronic address:
Objectives: Gastrointestinal (GI) disturbance is a frequent complication in patients with thoracolumbar vertebral fracture (TVF). Transcutaneous electrical acustimulation (TEA) has been reported to effectively accelerate postoperative GI function recovery after abdominal surgery. This study aimed to investigate the effects of TEA on postoperative recovery and the associated mechanisms.
View Article and Find Full Text PDFLangmuir
January 2025
School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method.
View Article and Find Full Text PDFJ Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, Government Degree College, Doda, India.
This review article highlights the importance of novel charge transfer (CT) sensing approach for the detection of ions which are crucial from environmental and biological point of view. The importance, principles of charge transfer, ion sensing, its different types, and its basic process will all be covered here. The strategy has been reported with enormous sensitivity and fast signaling response owing to the fact that strong electronic connection communication exists between donor (D) and acceptor (A) part.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!