A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic approaches for tissue engineering. | LitMetric

Biomimetic approaches for tissue engineering.

J Biomater Sci Polym Ed

a Centre for Incubation, Innovation, Research and Consultancy , Jyothy Institute of Technology, Bengaluru , India.

Published: October 2018

Advancement in medical technologies, emergence of new diseases and need for quick and effective treatments have increased the requirement for unique and distinct materials. A plethora of materials in various forms, shapes and sizes have been developed from polymers, metals and ceramics and extensively explored for both in vitro and in vivo applications. When used inside the body, biomaterials include metals, polymers and ceramics typically as implants, scaffolds, drug or gene carriers and also as protective agents. Although various materials are used for biomedical products, natural polymers are preferred over synthetic or metallic materials since they have better biocompatibility and ability to degrade in vivo without releasing toxic substances. In addition to the material, the structure and properties of the biomedical device/product plays a crucial role, particularly, when used for in vivo applications. It is desirable that the materials or products developed resemble the structure and replicate the biological functions in the body. For instance, 3D, nanofibrous structures similar to the extracellular matrix are considered suitable as tissue engineering scaffolds. Hence, extensive studies have been done to biomimic the biological systems and develop biomedical materials and devices using natural and synthetic polymers. For instance, successful replication of the biomineralization and bone formation and regeneration of tissue have been done. There are unlimited choice of materials, approaches and potential products that can be developed using the biomimetic approach. In this review, we provide an overview of the materials and methods used to develop biomimetic products for various medical applications. The objective of this study to provide readers with information on the various methods, materials and approaches that can be used to develop biomimetic materials to address the challenges and needs of the medicine and health care industries. This manuscript is restricted to discussions on biomimetic approaches for tissue engineering applications. However, there are considerable other medical applications of biomimetic materials which are not part of this review.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2018.1500084DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
materials
11
biomimetic approaches
8
approaches tissue
8
vivo applications
8
products developed
8
materials approaches
8
develop biomimetic
8
medical applications
8
biomimetic materials
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!