Synthesis of (-)-Cytisine Using a 6- endo aza-Michael Addition.

J Org Chem

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 637371, Singapore.

Published: August 2018

An asymmetric synthesis of (-)-cytisine has been achieved. The piperidine C-ring was formed using a stereodivergent intramolecular 6- endo aza-Michael addition. The B-ring was established by intramolecular pyridine N-alkylation. The absolute stereochemistry was established by an Evans acyl oxazolidinone enolate alkylation reaction that proceeded with an unexpected stereochemical outcome due to participation of the pyridine nitrogen lone pair.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b01156DOI Listing

Publication Analysis

Top Keywords

synthesis --cytisine
8
endo aza-michael
8
aza-michael addition
8
--cytisine endo
4
addition asymmetric
4
asymmetric synthesis
4
--cytisine achieved
4
achieved piperidine
4
piperidine c-ring
4
c-ring formed
4

Similar Publications

Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev

January 2025

Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA.

Background: Electronic cigarettes (ECs) are handheld electronic vaping devices that produce an aerosol by heating an e-liquid. People who smoke, healthcare providers, and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review.

View Article and Find Full Text PDF

Background: People from lower socioeconomic groups are more likely to smoke and less likely to succeed in achieving abstinence, making tobacco smoking a leading driver of health inequalities. Contextual factors affecting subpopulations may moderate the efficacy of individual-level smoking cessation interventions. It is not known whether any intervention performs differently across socioeconomically-diverse populations and contexts.

View Article and Find Full Text PDF

RNAi-mediated knockdown of HcCAT2 depresses the adaptive capacity of Hyphantria cunea larvae to cytisine and coumarin.

Int J Biol Macromol

January 2025

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.

View Article and Find Full Text PDF

Interventions for quitting vaping.

Cochrane Database Syst Rev

January 2025

Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA.

Rationale: There is limited guidance on the best ways to stop using nicotine-containing vapes (otherwise known as e-cigarettes) and ensure long-term abstinence, whilst minimising the risk of tobacco smoking and other unintended consequences. Treatments could include pharmacological interventions, behavioural interventions, or both.

Objectives: To conduct a living systematic review assessing the benefits and harms of interventions to help people stop vaping compared to each other or to placebo or no intervention.

View Article and Find Full Text PDF

HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea's adaptation to a diverse range of host plants.

Pestic Biochem Physiol

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Strong multi-host adaptability significantly contributes to the rapid dissemination of Hyphantria cunea. The present study explores the involvement of cytochrome P450 monooxygenase (P450) in the multi-host adaptation of H. cunea and aims to develop RNA pesticides targeting essential P450 genes to disrupt this adaptability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!