Background: Beta thalassaemia is a common inherited blood disorder. The need for frequent blood transfusions in this condition poses a difficult problem to healthcare systems. The most common cause of morbidity and mortality is cardiac dysfunction from iron overload. The use of iron chelation therapy has reduced the severity of systemic iron overload but specific, non-toxic treatment is required for removal of iron from the myocardium.
Objectives: To assess the effects of calcium channel blockers combined with standard iron chelation therapy in people with transfusion-dependent beta thalassaemia on the amount of iron deposited in the myocardium, on parameters of heart function, and on the incidence of severe heart failure or arrhythmias and related morbidity and mortality.
Search Methods: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials databases, and the reference lists of relevant articles and reviews.Date of last search: 24 February 2018.
Selection Criteria: We included randomised controlled trials of calcium channel blockers combined with standard chelation therapy compared with standard chelation therapy alone or combined with placebo in people with transfusion-dependent beta thalassaemia.
Data Collection And Analysis: Two authors independently applied the inclusion criteria for the selection of trials. Two authors assessed the risk of bias of trials and extracted data and a third author verified these assessments. The authors used the GRADE system to assess the quality of the evidence.
Main Results: Two randomised controlled trials (n = 74) were included in the review; there were 35 participants in the amlodipine arms and 39 in the control arms. The mean age of participants was 24.4 years with a standard deviation of 8.5 years. There was comparable participation from both genders. Overall, the risk of bias in included trials was low. The quality of the evidence ranged across outcomes from low to high, but the evidence for most outcomes was judged to be low quality.Cardiac iron assessment, as measured by heart T2*, did not significantly improve in the amlodipine groups compared to the control groups at six or 12 months (low-quality evidence). However, myocardial iron concentration decreased significantly in the amlodipine groups compared to the control groups at both six months, mean difference -0.23 mg/g (95% confidence interval -0.07 to -0.39), and 12 months, mean difference -0.25 mg/g (95% confidence interval -0.44 to -0.05) (low-quality evidence). There were no significant differences between treatment and control groups in serum ferritin (low-quality evidence), liver T2* (low-quality evidence), liver iron content (low-quality evidence) and left ventricular ejection fraction (low-quality evidence). There were no serious adverse events reported in either trial; however, one trial (n = 59) reported mild adverse events, with no statistically significant difference between groups (low-quality evidence).
Authors' Conclusions: The available evidence does not clearly suggest that the use of calcium channel blockers is associated with a reduction in myocardial iron in people with transfusion-dependent beta thalassaemia, although a potential for this was seen. There is a need for more long-term, multicentre trials to assess the efficacy and safety of calcium channel blockers for myocardial iron overload, especially in younger children. Future trials should be designed to compare commonly used iron chelation drugs with the addition of calcium channel blockers to investigate the potential interplay of these treatments. In addition, the role of baseline myocardial iron content in affecting the response to calcium channel blockers should be investigated. An analysis of the cost-effectiveness of the treatment is also required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513605 | PMC |
http://dx.doi.org/10.1002/14651858.CD011626.pub2 | DOI Listing |
MedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFFront Chem
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
Ethnopharmacological Relevance: In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children.
Aim Of The Study: The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde.
Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices . Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels , has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.
View Article and Find Full Text PDFNeuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.
View Article and Find Full Text PDFBackground: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!