The cellular mechanisms of laticifer growth are of particular interest in plant biology but are commonly neglected. Using transmission electron microscopy and immunocytochemical methods, we recorded cytological differentiation and evaluated the cell wall involvement in the growth of articulated laticifers with intrusive growth in the mature embryo and plant shoot apex of Tabernaemontana catharinensis. The incorporation of adjacent meristematic cells into the laticifer system occurred in the embryo and plant shoot apex, and the incorporated cells acquired features of laticifer, confirming the laticifers' action-inducing mechanism. In the embryo, this was the main growth mechanism, and began with enlargement of the plasmodesmata and the formation of pores between laticifers and meristematic cells. In the plant shoot apex, it began with loose and disassembled walls and the reorientation of the cortical microtubules of the incorporated cell. Plasmodesmata were absent in these laticifers. There was stronger evidence of intrusive growth in undifferentiated portions of the plant shoot apex than in the embryo. The numerous plasmodesmata in laticifers of the embryo may have been related to the lower frequency of intrusive growth. Intrusive growth was associated with presence of arabinan (increasing wall flexibility and fluidity), and absence of galactan (avoiding wall stiffness), and callose (as a consequence of reduction in symplastic connections) in the laticifer walls. The abundance of low de-methyl-esterified homogalacturonan in the middle lamella and corners may reestablish cell-cell bonding in the laticifers. The cell wall features differed between embryo and plant shoot apex and are directly associated to laticifer growth mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-018-1284-3DOI Listing

Publication Analysis

Top Keywords

plant shoot
20
shoot apex
20
intrusive growth
16
cell wall
12
embryo plant
12
growth
9
cytological differentiation
8
wall involvement
8
involvement growth
8
growth mechanisms
8

Similar Publications

Identification of EXPA4 as a key gene in cotton salt stress adaptation through transcriptomic and coexpression network analysis of root tip protoplasts.

BMC Plant Biol

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.

Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.

View Article and Find Full Text PDF

Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.

View Article and Find Full Text PDF

Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.

View Article and Find Full Text PDF

The dried fig cv. Sabz of Iran, distinguishes out among the several fig cultivars for its unique characteristics and excellent properties. The aims to this study were 1) Carefully monitoring the resulting phenotypic changes in growth patterns, leaf morphology, shoot traits, root characteristics, and other relevant traits after irradiated with different gamma rays; 2) Investigating the LD25, 50, 75 and GR25, 50, 75 values at different gamma radiation doses for chose optimum dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!