Extreme ultraviolet interference lithography (EUV-IL) is used to manufacture topographical guiding patterns to direct the self-assembly of block copolymers. High-accuracy silicon oxide-like patterns with trenches ranging from 68 nm to 117 nm width are fabricated by exposing a hydrogen silsesquioxane (HSQ) resist layer using EUV-IL. We investigate how the accuracy, the low line width roughness and the low line edge roughness of the resulting patterns allow achieving DSA line/space patterns of a PS-b-PMMA (polystyrene-block-poly methyl methacrylate) block copolymer of 11 nm half-pitch with low defectivity. We conduct an in-depth study of the dependence of the DSA pattern morphology on the trench width and on how the neutral brush covers the guiding pattern. We identify the relation between trench width and the emergence of defects with nanometer precision. Based on these studies, we develop a model that extends available free energy models, which allows us to predict the patterning process window.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm01045e | DOI Listing |
Adv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFSmall
December 2024
School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.
View Article and Find Full Text PDFAdv Mater
December 2024
David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation.
View Article and Find Full Text PDFJ Microencapsul
December 2024
Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey.
This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS.
View Article and Find Full Text PDFSoft Matter
December 2024
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain.
The potential applications of block copolymer thin films, utilising their self-assembly capabilities, are enhanced when achieving long-range ordering. In this study we explain the experimental alignment of lamellae under shear flow findings [S. Pujari , 2012, , 5258] and classify the alignment mechanisms based on shear rate and segregation, uncovering similarities to the systems subjected to electric fields, suggesting a common pathway of lamellae orientations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!