Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives.

Chem Sci

Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology, Julianalaan 136 , 2628BL Delft , The Netherlands . Email:

Published: June 2016

We report the synthesis and excited-state dynamics of a series of five bichromophoric light-harvesting antenna systems, which are capable of efficient harvesting of solar energy in the spectral range of 350-580 nm. These antenna systems have been synthesized in a modular fashion by the covalent attachment of blue light absorbing naphthalene monoimide energy donors (, , and ) to green light absorbing perylene-3,4,9,10-tetracarboxylic acid derived energy acceptors, 1,7-perylene-3,4,9,10-tetracarboxylic tetrabutylester (), 1,7-perylene-3,4,9,10-tetracarboxylic monoimide dibutylester (), and 1,7-perylene-3,4,9,10-tetracarboxylic bisimide (). The energy donors have been linked at the 1,7-bay-positions of the perylene derivatives, thus leaving the positions free for further functionalization and device construction. A highly stable and rigid structure, with no electronic communication between the donor and acceptor components, has been realized an all-aromatic non-conjugated phenoxy spacer between the constituent chromophores. The selection of donor naphthalene derivatives for attachment with perylene derivatives was based on the effective matching of their respective optical properties to achieve efficient excitation energy transfer (EET) by the Förster mechanism. A comprehensive study of the excited-state dynamics, in toluene, revealed quantitative and ultrafast ( 1 ps) intramolecular EET from donor naphthalene chromophores to the acceptor perylenes in all the studied systems. Electron transfer from the donor naphthalene chromophores to the acceptor perylenes has not been observed, not even for antenna systems in which this process is thermodynamically allowed. Due to the combination of an efficient and fast energy transfer along with broad absorption in the visible region, these antenna systems are promising materials for solar-to-electric and solar-to-fuel devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007178PMC
http://dx.doi.org/10.1039/c6sc00386aDOI Listing

Publication Analysis

Top Keywords

antenna systems
20
donor naphthalene
12
light-harvesting antenna
8
excited-state dynamics
8
light absorbing
8
energy donors
8
perylene derivatives
8
energy transfer
8
naphthalene chromophores
8
chromophores acceptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!