Cholera toxin inhibits chemotaxis of the RAW264 mouse macrophage cell line. The degree of inhibition by cholera toxin increases upon incubation with the cells, suggesting that the entry of the toxin is required for inhibition of chemotaxis. In the absence of guanine nucleotides, cholera toxin catalyzes the [32P]ADP-ribosylation of RAW264 cell membrane proteins of Mr 41,000, Mr 45,000, and a doublet of Mr 48,000-50,000. GTP increases the labeling of the Mr 45,000 protein and the Mr 48,000-50,000 doublet, and it decreases the labeling of the Mr 41,000 protein. Experiments with cholera toxin treatment of intact cells indicate that the Mr 45,000 protein is the major membrane protein ADP-ribosylated by the toxin in vivo. Cholera toxin increases cAMP levels in RAW264 cells, but increased cAMP levels do not correlate with inhibition of chemotaxis, because isoproterenol and forskolin, which also increase cAMP levels, have no effect on chemotaxis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390839 | PMC |
http://dx.doi.org/10.1073/pnas.82.22.7475 | DOI Listing |
Mol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFThe role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.
View Article and Find Full Text PDFJ Anat
January 2025
Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil.
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.
View Article and Find Full Text PDFRMD Open
December 2024
Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.
Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!