is a leading cause of respiratory diseases in many host species. To understand the genetic characteristics of strains isolated from different host species, we sequenced the genomic DNA of isolated from pigs and analyzed the genetic characteristics of strains from avian species, bovine species, pigs, and rabbits using whole genome sequence (WGS) data. Our results found that a capsular: lipopolysaccharide (LPS): multilocus sequence typing (MLST) genotype A: L1: ST129 (43.75%) was predominant in avian ; while genotypes B: L2: ST122 (60.00%) and A: L3: ST79 (30.00%) were predominate in bovine ; genotype D: L6: ST50 (37.50%) in porcine ; and genotype A: L3: ST9 (76.47%) in rabbit . Comparative genomic analysis of from different host species found that there are no genes in the genome that are specific to any type of host. Phylogenetic analysis using either whole-genome single nucleotide polymorphisms (SNPs) or the set of SNPs present in all single-copy core genes across genomes showed that strains with the same LPS genotype and MLST genotype were clustered together, suggesting the combining both the LPS and MLST typing schemes better explained the topology seen in the phylogeny.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029419 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01408 | DOI Listing |
Plant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.
The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.
The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!