Lanthanide-dependent alcohol dehydrogenases have recently emerged as environmentally important enzymes, most prominently represented in methylotrophic bacteria. The diversity of these enzymes, their environmental distribution, and their biochemistry, as well as their evolutionary relationships with their calcium-dependent counterparts remain virtually untapped. Here, we make important advances toward understanding lanthanide-dependent methylotrophy by assessing the distribution of XoxF4 and XoxF5 clades of lanthanide methanol dehydrogenases among, respectively, Methylophilaceae and non-Methylophilaceae methylotrophs, and we carry out comparative biochemical characterization of XoxF4 and XoxF5 enzymes, demonstrating differences in their properties, including catalytic efficiencies. We conclude that one subtype of the XoxF4 enzyme, XoxF4-1 is the dominant type in nature while other XoxF4 subtypes appear to be auxiliary, representatives of this clade only found in the Methylophilaceae (Betaproteobacteria). In contrast, we demonstrate that XoxF5 enzymes are widespread among Alpha-, Beta-, and Gammaproteobacteria. We purified and biochemically characterized two XoxF4 enzymes (XoxF4-1 and XoxF4-2), both from , and one XoxF5 enzyme, from sp., after expressing their His-tagged versions in respective natural hosts. All three enzymes showed broad specificities toward alcohols and aldehydes and strict dependence on lighter lanthanides. However, they revealed differences in their properties in terms of optimal pH for activity, ammonia dependence, the range of lanthanides that could serve as cofactors, and in kinetic properties. Overall, our data advance the understanding of the biochemistry and environmental distribution of these recently discovered enzymes that appear to be key enzymes in lanthanide-dependent methylotrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028718 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01366 | DOI Listing |
Int J Mol Sci
April 2022
Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
This study investigated the occurrence and diversity of proteobacterial XoxF-type methanol dehydrogenases (MDHs) in the microbial community that inhabits a fossil organic matter- and sedimentary lanthanide (Ln)-rich underground mine environment using a metagenomic and metaproteomic approach. A total of 8 XoxF-encoding genes (XoxF-EGs) and 14 protein sequences matching XoxF were identified. XoxF-type MDHs were produced by -, -, and represented by the four orders , , , and .
View Article and Find Full Text PDFMethods Enzymol
June 2021
Department of Chemical Engineering, University of Washington, Seattle, WA, United States. Electronic address:
In this chapter we describe logistics, protocols and conditions for expression, purification and characterization of Ln-dependent alcohol dehydrogenases representing three distinct phylogenetic clades of these enzymes, classified as XoxF4, XoxF5 and ExaF/PedH. We present data on the biochemical properties of a dozen enzymes, all generated by our group, in a comparative fashion. These enzymes display a range of properties in terms of substrate and metal specificities, pH and ammonium requirement, as well as catalytic constants.
View Article and Find Full Text PDFFront Microbiol
June 2018
Department of Chemical Engineering, University of Washington, Seattle, WA, United States.
Lanthanide-dependent alcohol dehydrogenases have recently emerged as environmentally important enzymes, most prominently represented in methylotrophic bacteria. The diversity of these enzymes, their environmental distribution, and their biochemistry, as well as their evolutionary relationships with their calcium-dependent counterparts remain virtually untapped. Here, we make important advances toward understanding lanthanide-dependent methylotrophy by assessing the distribution of XoxF4 and XoxF5 clades of lanthanide methanol dehydrogenases among, respectively, Methylophilaceae and non-Methylophilaceae methylotrophs, and we carry out comparative biochemical characterization of XoxF4 and XoxF5 enzymes, demonstrating differences in their properties, including catalytic efficiencies.
View Article and Find Full Text PDFFEMS Microbiol Ecol
October 2015
Department of Biology, Concordia University, 7141 Sherbrooke St West, Montreal, Quebec, H4B 1R6, Canada Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Canada Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, Quebec Canada
The diversity and distribution of methylotrophic bacteria have been investigated in the oceans and lakes using the methanol dehydrogenase mxaF gene as a functional marker. However, pelagic marine (OM43) and freshwater (LD28 and PRD01a001B) methylotrophs within the Betaproteobacteria lack mxaF, instead possessing a related xoxF4-encoded methanol dehydrogenase. Here, we developed and employed xoxF4 as a complementary functional gene marker to mxaF for studying methylotrophs in aquatic environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!