Parameters of motion vision in low light in the hawkmoth .

J Exp Biol

Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA

Published: October 2018

The hawkmoth is nocturnally active, beginning its flight activity at sunset, and executing rapid controlled maneuvers to search for food and mates in dim light conditions. The visual system of this moth has been shown to trade off spatial and temporal resolution for increased sensitivity in these conditions. The study presented here uses tethered flying moths to characterize the flight performance envelope of the wide-field-motion-triggered steering response of in low light conditions by measuring attempted turning in response to wide-field visual motion. Moths were challenged with a horizontally oscillating sinusoidal grating at a range of luminance, from daylight to starlight conditions. The impact of luminance on response to a range of temporal frequencies and spatial wavelengths was assessed across a range of pattern contrasts. The optomotor response decreased as a function of decreasing luminance, and the lower limit of the moth's contrast sensitivity was found to be between 1 and 5%. The preferred spatial frequency for increased from 0.06 to 0.3 cycles deg as the luminance decreased, but the preferred temporal frequency remained stable at 4.5 Hz across all conditions. The relationship between the optomotor response time to the temporal frequency of the pattern movement did not vary significantly with luminance levels. Taken together, these results suggest that the behavioral response to wide-field visual input in is adapted to operate during crepuscular to nocturnal luminance levels, and the decreasing light levels experienced during that period changes visual acuity and does not affect their response time significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.173344DOI Listing

Publication Analysis

Top Keywords

low light
8
light conditions
8
response wide-field
8
wide-field visual
8
optomotor response
8
temporal frequency
8
response time
8
luminance levels
8
response
7
luminance
6

Similar Publications

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Protein interactions play a crucial role in regulating cellular mechanisms, highlighting the need for effective methods to control these processes. In this regard, chemical inducers of proximity (CIPs) offer a promising approach to precisely manipulate protein-protein interactions in live cells and . In this study, we introduce pMandi, a photocaged version of the plant hormone-based CIP mandipropamid (Mandi), which allows the use of light as an external trigger to induce protein proximity in live mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!