In intensity-modulated radiation therapy (IMRT), it is time-consuming to repeatedly adjust the objectives manually to obtain the best tradeoff between the prescribed dose of the planning target volume and sparing the organs-at-risk. Here we propose a new method to realize automatic multi-objective IMRT optimization, which quantifies the clinical preferences into the constraint priority list and adjusts the dose constraints based on the list to obtain the optimal solutions under the dose constraints. This method contains automatic adjustment mechanism of the dose constraint and automatic voxel weighting factor-based FMO model. Every time the dose constraint is adjusted, the voxel weighting factor-based FMO model is launched to find a global optimal solution that satisfied the current constraints. We tested the feasibility and effectiveness of this method in 6 cases of cervical cancer with IMRT by comparing the original plan and the automatic optimization plan generated by this method. The results showed that with the same PTV coverage and uniformity, the automatic optimization plan had a better a dose sparing of the organs-at-risk and a better plan quality than the original plan, and resulted in obvious reductions of the average V45 of the rectum from (41.99∓13.31)% to (32.55∓22.27)% and of the bladder from (44.37∓4.08)% to (28.99∓15.25)%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765717 | PMC |
http://dx.doi.org/10.3969/j.issn.1673-4254.2018.06.08 | DOI Listing |
Sci Rep
December 2024
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Recently, neoadjuvant short-course radiation therapy (SCRT) has emerged as a valid treatment option for patients with locally advanced rectal cancer (LARC). We assessed SCRT plans using volumetric-modulated arc therapy (VMAT) with Halcyon and Infinity medical linear accelerators (Linacs) and compared the plan quality and delivery efficiency across all cases. Thirty patients who underwent preoperative SCRT for LARC at the hospital were randomly selected.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China.
This study aimed to find a safe and effective cumulative cisplatin dose (CCD) for concurrent chemoradiotherapy (CCRT) beneficiaries among elderly nasopharyngeal carcinoma (NPC) patients. A total of 765 elderly (≥ 60 years old) NPC patients treated with cisplatin-based CCRT and IMRT-alone from 2007 to 2018 were included in this study. RPA-generated risk stratification was used to identify CCRT beneficiaries.
View Article and Find Full Text PDFJ Pers Med
November 2024
Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy.
. Adult medulloblastoma (AMB) patients should receive postoperative craniospinal irradiation (CSI) as a standard treatment. Volumetric intensity-modulated arc therapy (VMAT) is a promising method for CSI.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, GuangZhou, GuangDong, China.
Background: This study investigates the impact of convergence mode (CM) in Eclipse (Varian Medical Systems) on the quality and complexity of volumetric modulated arc therapy (VMAT) plans for nasopharyngeal carcinoma (NPC) patients.
Methods: We retrospectively analyzed data from 21 NPC patients. For each patient, three VMAT plans with different CM settings (Off, On, and Extended) were created using identical optimization objectives.
J Radiat Res
December 2024
Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!