Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression.

Breast Cancer Res

Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.

Published: July 2018

Background: Estrogen promotes breast cancer development and progression mainly through estrogen receptor (ER). However, blockage of estrogen production or action prevents development of and suppresses progression of ER-negative breast cancers. How estrogen promotes ER-negative breast cancer development and progression is poorly understood. We previously discovered that deletion of cell cycle inhibitors p16 (p16) or p18 (p18) is required for development of Brca1-deficient basal-like mammary tumors, and that mice lacking p18 develop luminal-type mammary tumors.

Methods: A genetic model system with three mouse strains, one that develops ER-positive mammary tumors (p18 single deletion) and the others that develop ER-negative tumors (p16;Brca1 and p18;Brca1 compound deletion), human BRCA1 mutant breast cancer patient-derived xenografts, and human BRCA1-deficient and BRCA1-proficient breast cancer cells were used to determine the role of estrogen in activating epithelial-mesenchymal transition (EMT), stimulating cell proliferation, and promoting ER-negative mammary tumor initiation and metastasis.

Results: Estrogen stimulated the proliferation and tumor-initiating potential of both ER-positive Brca1-proficient and ER-negative Brca1-deficient tumor cells. Estrogen activated EMT in a subset of Brca1-deficient mammary tumor cells that maintained epithelial features, and enhanced the number of cancer stem cells, promoting tumor progression and metastasis. Estrogen activated EMT independent of ER in Brca1-deficient, but not Brca1-proficient, tumor cells. Estrogen activated the AKT pathway in BRCA1-deficient tumor cells independent of ER, and pharmaceutical inhibition of AKT activity suppressed EMT and cell proliferation preventing BRCA1 deficient tumor progression.

Conclusions: This study reveals for the first time that estrogen promotes BRCA1-deficient tumor initiation and progression by stimulation of cell proliferation and activation of EMT, which are dependent on AKT activation and independent of ER.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042319PMC
http://dx.doi.org/10.1186/s13058-018-0996-9DOI Listing

Publication Analysis

Top Keywords

estrogen promotes
16
brca1-deficient tumor
16
breast cancer
16
tumor cells
16
estrogen
12
tumor initiation
12
cell proliferation
12
estrogen activated
12
tumor
9
estrogen receptor
8

Similar Publications

An estrogen receptor β-targeted near-infrared probe for theranostic imaging of prostate cancer.

RSC Med Chem

December 2024

Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China

Estrogen receptor β (ERβ) is aberrantly expressed in castration-resistant prostate cancer (CRPC). Therefore, a diagnostic and therapeutic ERβ probe not only helps to reveal the complex role of ERβ in prostate cancer (PCa), but also promotes ERβ-targeted PCa therapy. Herein, we reported a novel ERβ-targeted near-infrared fluorescent probe D3 with both imaging and therapeutic functions, which had the advantages of high ERβ selectivity, good optical performance, and strong anti-interference ability.

View Article and Find Full Text PDF

Maternal exposure to ozone during implantation promotes a feminized transcriptomic profile in the male adolescent liver.

Endocrinology

January 2025

Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC.

Maternal exposure to ozone during implantation results in reduced fetal weight gain in rats. Offspring from ozone-exposed dams demonstrate sexually dimorphic risks to high-fat diet feeding in adolescence. To better understand the adolescent hepatic metabolic landscape following fetal growth restriction, RNA sequencing was performed to characterize the effects of ozone-induced fetal growth restriction on male and female offspring.

View Article and Find Full Text PDF

Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.

View Article and Find Full Text PDF

Ailanthone induces triple-negative breast cancer cells death involving the inhibition of OTUB1-mediated ERRα deubiquitylation.

J Adv Res

January 2025

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:

Introduction: Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer, and effective therapeutic strategies are needed. Estrogen-related receptor alpha (ERRα) is considered a promising target for managing TNBC.

Objectives: Here, we aimed to screen natural products to find downregulator of ERRα and elucidate its mechanism of action.

View Article and Find Full Text PDF

2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!