Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the sp. 5-Enolpyruvylshikimate-3-Phosphate Synthase.

J Microbiol Biotechnol

Plant Science Department, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

Published: August 2018

Glyphosate inhibits the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway. A mutant of EPSPS from sp. was identified using site-directed mutagenesis (SDM). The mutant significantly improved glyphosate resistance. The mutant had mutations in three amino acids: Gly97 to Ala, Thr 98 to Ile and Pro 102 to Ser. These mutation sites in have been studied as significant active sites of glyphosate resistance. However, in our research they were found to jointly contribute to the improvement of glyphosate tolerance. In addition, the level of glyphosate tolerance in transgenic confirmed the potentiality of the mutant in breeding glyphosate-resistant plants.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1801.01026DOI Listing

Publication Analysis

Top Keywords

glyphosate resistance
12
improvement glyphosate
8
mutations three
8
three amino
8
amino acids
8
5-enolpyruvylshikimate-3-phosphate synthase
8
glyphosate tolerance
8
glyphosate
5
resistance concurrent
4
concurrent mutations
4

Similar Publications

Insecticides may facilitate the escape of weeds from biological control.

PeerJ

January 2025

Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.

Background: Preventative pesticide seed treatments (hereafter preventative pest management or PPM) are common corn and soybean treatments, and often include both fungicides and neonicotinoid insecticides. While PPM is intended to protect crops from soil-borne pathogens and early season insect pests, these seed treatments may have detrimental effects on biological control of weed seeds by insects.

Methods: Here, in two 3-year corn-soy rotations in Pennsylvania USA, we investigated a PPM approach to insect management compared to an integrated pest management approach (IPM) and a "no (insect) pest management" (NPM) control.

View Article and Find Full Text PDF

immunotoxic evaluation of herbicides in RAW 264.7 cells.

J Toxicol Environ Health A

January 2025

Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.

Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells.

View Article and Find Full Text PDF

Limited research investigating the impact of pesticides on antibiotic resistance genes (ARGs) and viral community in the gut of wild animals. In this study, we employed metagenomic to investigate the effects of glyphosate and spinetoram on the gut viral communities, ARGs, and their interactions in a key wild pollinator, bumblebees. The results showed that both 2.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Genetically modified (GM) herbicide-tolerant soybean 'Zhonghuang 6106', which introduces a glyphosate-resistant gene, ensures soybean yield while allowing farmers to reduce the use of other herbicides, thereby reducing weed management costs. To protect consumer rights and facilitate government supervision, we have established a simple and rapid on-site nucleic acid detection method for GM soybean 'Zhonghuang 6106'. This method leverages the isothermal amplification characteristics of RPA technology and the high specificity of CRISPR-Cas12a to achieve high sensitivity and accuracy in detecting GM soybean components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!